Parameterized Algorithms for Finding a Collective Set of Items

被引:0
|
作者
Bredereck, Robert [1 ]
Faliszewski, Piotr [2 ]
Kaczmarczy, Andrzej [1 ]
Knop, Dusan [1 ,3 ]
Niedermeier, Roif [1 ]
机构
[1] Tech Univ Berlin, Chair Algorithm & Computat Complex, Berlin, Germany
[2] AGH Univ Sci & Technol, Krakow, Poland
[3] Czech Tech Univ, Fac Informat Technol, Dept Theoret Comp Sci, Prague, Czech Republic
关键词
FULLY PROPORTIONAL REPRESENTATION; COMPLEXITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We extend the work of Skowron et al. (AIJ, 2016) by considering the parameterized complexity of the following problem. We are given a set of items and a set of agents, where each agent assigns an integer utility value to each item. The goal is to find a set of k items that these agents would collectively use. For each such collective set of items, each agent provides a score that can be described using an OWA (ordered weighted average) operator and we seek a set with the highest total score. We focus on the parameterization by the number of agents and we find numerous fixed-parameter tractability results (however, we also find some W[1]-hardness results). It turns out that most of our algorithms even apply to the setting where each agent has an integer weight.
引用
收藏
页码:1838 / 1845
页数:8
相关论文
共 50 条
  • [1] Finding a collective set of items: From proportional multirepresentation to group recommendation
    Skowron, Piotr
    Faliszewski, Piotr
    Lang, Jerome
    ARTIFICIAL INTELLIGENCE, 2016, 241 : 191 - 216
  • [2] Finding a Collective Set of Items: From Proportional Multirepresentation to Group Recommendation
    Skowron, Piotr
    Faliszewski, Piotr
    Lang, Jerome
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2131 - 2137
  • [3] Parameterized Algorithms for Finding Square Roots
    Manfred Cochefert
    Jean-François Couturier
    Petr A. Golovach
    Dieter Kratsch
    Daniël Paulusma
    Algorithmica, 2016, 74 : 602 - 629
  • [4] Parameterized Algorithms for Finding Square Roots
    Cochefert, Manfred
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    ALGORITHMICA, 2016, 74 (02) : 602 - 629
  • [5] Parameterized Algorithms for the Happy Set Problem
    Asahiro, Yuichi
    Eto, Hiroshi
    Hanaka, Tesshu
    Lin, Guohui
    Miyano, Eiji
    Terabaru, Ippei
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 323 - 328
  • [6] Parameterized algorithms for the Happy Set problem
    Asahiro, Yuichi
    Eto, Hiroshi
    Hanaka, Tesshu
    Lin, Guohui
    Miyano, Eiji
    Terabaru, Ippei
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 32 - 44
  • [7] Parameterized algorithms for feedback vertex set
    Kanj, I
    Pelsmajer, M
    Schaefer, M
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 235 - 247
  • [8] Parameterized algorithms for finding highly connected solution
    Abhinav, Ankit
    Bandopadhyay, Susobhan
    Banik, Aritra
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2023, 942 : 47 - 56
  • [9] Improved parameterized algorithms for planar dominating set
    Kanj, IA
    Perkovic, L
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2002, 2002, 2420 : 399 - 410
  • [10] Parameterized algorithms for HITTING SET: The weighted case
    Fernau, Henning
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 332 - 343