An incremental learning algorithm for the hybrid RBF-BP network classifier

被引:0
|
作者
Hui Wen
Weixin Xie
Jihong Pei
Lixin Guan
机构
[1] Shenzhen University,ATR Key Lab of National Defense
关键词
Radial basis function (RBF); Back propagation (BP); Incremental learning; Hybrid; Neural network;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an incremental learning algorithm for the hybrid RBF-BP (ILRBF-BP) network classifier. A potential function is introduced to the training sample space in space mapping stage, and an incremental learning method for the construction of RBF hidden neurons is proposed. The proposed method can incrementally generate RBF hidden neurons and effectively estimate the center and number of RBF hidden neurons by determining the density of different regions in the training sample space. A hybrid RBF-BP network architecture is designed to train the output weights. The output of the original RBF hidden layer is processed and connected with a multilayer perceptron (MLP) network; then, a back propagation (BP) algorithm is used to update the MLP weights. The RBF hidden neurons are used for nonlinear kernel mapping and the BP network is then used for nonlinear classification, which improves classification performance further. The ILRBF-BP algorithm is compared with other algorithms in artificial data sets and UCI data sets, and the experiments demonstrate the superiority of the proposed algorithm.
引用
收藏
相关论文
共 50 条
  • [11] An incremental learning algorithm of ensemble classifier systems
    Kidera, Takuya
    Ozawa, Seiichi
    Abe, Shigeo
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3421 - +
  • [12] A new hybrid incremental learning algorithm for Bayesian network structures
    Shi, Da
    Tan, Shao-Hua
    Kongzhi yu Juece/Control and Decision, 2010, 25 (06): : 925 - 928
  • [13] Learning the architecture and parameters of RBF network based on hybrid IPL algorithm
    Zhu, GB
    Zhang, FM
    Wang, JG
    Shi, JY
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2919 - 2922
  • [14] 基于RBF-BP神经网络的图像修补
    李宇鹏
    王秋梅
    孙红胜
    匡梅兰
    燕山大学学报, 2007, (06) : 471 - 475
  • [15] A global learning algorithm for a RBF network
    Zhu, QM
    Cai, Y
    Liu, LZ
    NEURAL NETWORKS, 1999, 12 (03) : 527 - 540
  • [16] A global learning algorithm for a RBF network
    Digit. Imaging and Comp. Vis. Lab., University of Nebraska at Omaha, Omaha, NE 68182-0050, United States
    Neural Netw., 3 (527-540):
  • [17] Process prediction of Ni-SiC coatings based on RBF-BP model
    Liu, Yan
    Han, Xingguo
    Kang, Li
    Li, Qiang
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2022, 99 (07)
  • [18] 基于RBF-BP神经网络的健康监测系统
    黄雄华
    郑镇流
    何明辉
    杨献松
    信息系统工程, 2022, (12) : 43 - 46
  • [19] Hybrid Structure-Adaptive RBF-ELM Network Classifier
    Wen, Hui
    Fan, Hongguang
    Xie, Weixin
    Pei, Jihong
    IEEE ACCESS, 2017, 5 : 16539 - 16554
  • [20] 混合优化RBF-BP网络的板形缺陷识别
    张秀玲
    李家欢
    李金祥
    魏楷伦
    康学楠
    模糊系统与数学, 2020, 34 (01) : 149 - 156