Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction

被引:0
|
作者
Xin Luo
Xiaoqian Wei
Hengjia Wang
Wenling Gu
Takuma Kaneko
Yusuke Yoshida
Xiao Zhao
Chengzhou Zhu
机构
[1] Central China Normal University,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry
[2] The University of Electro-Communications,Innovation Research Center for Fuel Cells
来源
Nano-Micro Letters | 2020年 / 12卷
关键词
Single-atom catalysts; Fe–N–C catalysts; Doping; Porous nanostructures; Oxygen reduction reaction;
D O I
暂无
中图分类号
学科分类号
摘要
Single-atom catalysts (SACs) with nitrogen-coordinated nonprecious metal sites have exhibited inimitable advantages in electrocatalysis. However, a large room for improving their activity and durability remains. Herein, we construct atomically dispersed Fe sites in N-doped carbon supports by secondary-atom-doped strategy. Upon the secondary doping, the density and coordination environment of active sites can be efficiently tuned, enabling the simultaneous improvement in the number and reactivity of the active site. Besides, structure optimizations in terms of the enlarged surface area and improved hydrophilicity can be achieved simultaneously. Due to the beneficial microstructure and abundant highly active FeN5 moieties resulting from the secondary doping, the resultant catalyst exhibits an admirable half-wave potential of 0.81 V versus 0.83 V for Pt/C and much better stability than Pt/C in acidic media. This work would offer a general strategy for the design and preparation of highly active SACs for electrochemical energy devices.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [1] Secondary-Atom-Doping Enables Robust Fe-N-C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction
    Luo, Xin
    Wei, Xiaoqian
    Wang, Hengjia
    Gu, Wenling
    Kaneko, Takuma
    Yoshida, Yusuke
    Zhao, Xiao
    Zhu, Chengzhou
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [2] Secondary-Atom-Doping Enables Robust Fe-N-C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction
    Xin Luo
    Xiaoqian Wei
    Hengjia Wang
    Wenling Gu
    Takuma Kaneko
    Yusuke Yoshida
    Xiao Zhao
    Chengzhou Zhu
    Nano-Micro Letters, 2020, 12 (11) : 285 - 295
  • [3] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Liu, Kang
    Fu, Junwei
    Lin, Yiyang
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Lin, Zhang
    Liu, Min
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Kang Liu
    Junwei Fu
    Yiyang Lin
    Tao Luo
    Ganghai Ni
    Hongmei Li
    Zhang Lin
    Min Liu
    Nature Communications, 13
  • [5] Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction
    Jiang, Run
    Qiao, Zelong
    Xu, Haoxiang
    Cao, Dapeng
    CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 224 - 234
  • [6] Regulating the Electronic Configuration of Single-Atom Catalysts with Fe-N5 Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction
    Yang, Kun-Zu
    Xu, Chao
    Guo, Peng-Peng
    Zhao, Ye-Min
    Chi, Hua-Min
    Xu, Ying
    Wei, Ping-Jie
    Zheng, Tianlong
    He, Qinggang
    Ren, Qizhi
    Liu, Jin-Gang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (29): : 11033 - 11043
  • [7] Synthesis and Active Site Identification of Fe-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction
    Wan, Xin
    Chen, Weiqi
    Yang, Jiarui
    Liu, Mengchan
    Liu, Xiaofang
    Shui, Jianglan
    CHEMELECTROCHEM, 2019, 6 (02) : 304 - 315
  • [8] Hierarchically Porous Fe-N-C Single-Atom Catalysts via Ionothermal Synthesis for Oxygen Reduction Reaction
    Kisand, Kaarel
    Sarapuu, Ave
    Douglin, John C.
    Kikas, Arvo
    Kaarik, Maike
    Kozlova, Jekaterina
    Aruvali, Jaan
    Treshchalov, Alexey
    Leis, Jaan
    Kisand, Vambola
    Kukli, Kaupo
    Dekel, Dario R.
    Tammeveski, Kaido
    CHEMSUSCHEM, 2025, 18 (02)
  • [9] Recent progresses in the single-atom catalysts for the oxygen reduction reaction
    Li, Yalong
    Xu, Xiaolong
    Ai, Zizheng
    Zhang, Baoguo
    Shi, Dong
    Yang, Mingzhi
    Hu, Haixiao
    Shao, Yongliang
    Wu, Yongzhong
    Hao, Xiaopeng
    IONICS, 2023, 29 (02) : 455 - 481
  • [10] Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction
    Wan, Chengzhang
    Duan, Xiangfeng
    Huang, Yu
    ADVANCED ENERGY MATERIALS, 2020, 10 (14)