Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction

被引:0
|
作者
Xin Luo
Xiaoqian Wei
Hengjia Wang
Wenling Gu
Takuma Kaneko
Yusuke Yoshida
Xiao Zhao
Chengzhou Zhu
机构
[1] Central China Normal University,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry
[2] The University of Electro-Communications,Innovation Research Center for Fuel Cells
来源
Nano-Micro Letters | 2020年 / 12卷
关键词
Single-atom catalysts; Fe–N–C catalysts; Doping; Porous nanostructures; Oxygen reduction reaction;
D O I
暂无
中图分类号
学科分类号
摘要
Single-atom catalysts (SACs) with nitrogen-coordinated nonprecious metal sites have exhibited inimitable advantages in electrocatalysis. However, a large room for improving their activity and durability remains. Herein, we construct atomically dispersed Fe sites in N-doped carbon supports by secondary-atom-doped strategy. Upon the secondary doping, the density and coordination environment of active sites can be efficiently tuned, enabling the simultaneous improvement in the number and reactivity of the active site. Besides, structure optimizations in terms of the enlarged surface area and improved hydrophilicity can be achieved simultaneously. Due to the beneficial microstructure and abundant highly active FeN5 moieties resulting from the secondary doping, the resultant catalyst exhibits an admirable half-wave potential of 0.81 V versus 0.83 V for Pt/C and much better stability than Pt/C in acidic media. This work would offer a general strategy for the design and preparation of highly active SACs for electrochemical energy devices.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [21] Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review
    Zhang, Jincheng
    Yang, Hongbin
    Liu, Bin
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [22] Biphenylene with doping B/N as promising metal-free single-atom catalysts for electrochemical oxygen reduction reaction
    Feng, Zhen
    Zhang, Bingjie
    Li, Renyi
    Li, Fachuang
    Guo, Zhanyong
    Zheng, Shu
    Su, Guang
    Ma, Yaqiang
    Tang, Yanan
    Dai, Xianqi
    JOURNAL OF POWER SOURCES, 2023, 558
  • [23] Regulating the Local Microenvironment of an Fe-N4 Single-Atom Catalyst for Enhanced Oxygen Reduction Reaction
    Sun, Zhiguo
    Sun, Yuanhua
    Zhang, Xue
    Liu, Xiaokang
    Jiang, Shuaiwei
    Luo, Qiquan
    Xu, Faqiang
    Cao, Linlin
    Yao, Tao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (18): : 7463 - 7471
  • [24] Laser driven generation of single atom Fe-N-C catalysts for the oxygen reduction reaction
    Madrid, Ainhoa
    Tolosana-Moranchel, Alvaro
    Garcia, Alvaro
    Rojas, Sergio
    Bartolome, Fernando
    Pakrieva, Ekaterina
    Simonelli, Laura
    Martinez, Gema
    Hueso, Jose L.
    Santamaria, Jesus
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [25] Creating Asymmetric Fe-N3C-N Sites in Single-Atom Catalysts Boosts Catalytic Performance for Oxygen Reduction Reaction
    Xu, Chao
    Li, Xuewen
    Guo, Peng-Peng
    Yang, Kun-Zu
    Zhao, Ye-Min
    Chi, Hua-Min
    Xu, Ying
    Wei, Ping-Jie
    Wang, Zhi-Qiang
    Xu, Qing
    Liu, Jin-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (29) : 37927 - 37937
  • [26] Intrinsic Electrocatalytic Activity Regulation of M-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction
    Zhao, Chang-Xin
    Li, Bo-Quan
    Liu, Jia-Ning
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (09) : 4448 - 4463
  • [27] High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media
    Tian, Hao
    Song, Ailing
    Zhang, Peng
    Sun, Kaian
    Wang, Jingjing
    Sun, Bing
    Fan, Qiaohui
    Shao, Guangjie
    Chen, Chen
    Liu, Hao
    Li, Yadong
    Wang, Guoxiu
    ADVANCED MATERIALS, 2023, 35 (14)
  • [28] Contracted Fe-N5-C11 Sites in Single-Atom Catalysts Boosting Catalytic Performance for Oxygen Reduction Reaction
    Xu, Chao
    Zhang, Yan-Ping
    Zheng, Tian-Long
    Wang, Zhi-Qiang
    Zhao, Ye-Min
    Guo, Peng-Peng
    Lu, Chen
    Yang, Kun-Zu
    Wei, Ping-Jie
    He, Qing-Gang
    Gong, Xue-Qing
    Liu, Jin-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (27) : 32341 - 32351
  • [29] Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts
    Zhong, Lixiang
    Li, Shuzhou
    ACS CATALYSIS, 2020, 10 (07): : 4313 - 4318
  • [30] Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts
    Patel, Anjli M.
    Ringe, Stefan
    Siahrostami, Samira
    Bajdich, Michal
    Norskov, Jens K.
    Kulkarni, Ambarish R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (51): : 29307 - 29318