Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction

被引:0
|
作者
Kang Liu
Junwei Fu
Yiyang Lin
Tao Luo
Ganghai Ni
Hongmei Li
Zhang Lin
Min Liu
机构
[1] Central South University,Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics
[2] Central South University,School of Metallurgy and Environment
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-atom Fe-N-C catalysts has attracted widespread attentions in the oxygen reduction reaction (ORR). However, the origin of ORR activity on Fe-N-C catalysts is still unclear, which hinder the further improvement of Fe-N-C catalysts. Herein, we provide a model to understand the ORR activity of Fe-N4 site from the spatial structure and energy level of the frontier orbitals by density functional theory calculations. Taking the regulation of divacancy defects on Fe-N4 site ORR activity as examples, we demonstrate that the hybridization between Fe 3dz2, 3dyz (3dxz) and O2 π* orbitals is the origin of Fe-N4 ORR activity. We found that the Fe–O bond length, the d-band center gap of spin states, the magnetic moment of Fe site and *O2 as descriptors can accurately predict the ORR activity of Fe-N4 site. Furthermore, these descriptors and ORR activity of Fe-N4 site are mainly distributed in two regions with obvious difference, which greatly relate to the height of Fe 3d projected orbital in the Z direction. This work provides a new insight into the ORR activity of single-atom M-N-C catalysts.
引用
收藏
相关论文
共 50 条
  • [1] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Liu, Kang
    Fu, Junwei
    Lin, Yiyang
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Lin, Zhang
    Liu, Min
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction
    Jiang, Run
    Qiao, Zelong
    Xu, Haoxiang
    Cao, Dapeng
    [J]. CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 224 - 234
  • [3] Synthesis and Active Site Identification of Fe-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction
    Wan, Xin
    Chen, Weiqi
    Yang, Jiarui
    Liu, Mengchan
    Liu, Xiaofang
    Shui, Jianglan
    [J]. CHEMELECTROCHEM, 2019, 6 (02) : 304 - 315
  • [4] Secondary-Atom-Doping Enables Robust Fe-N-C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction
    Xin Luo
    Xiaoqian Wei
    Hengjia Wang
    Wenling Gu
    Takuma Kaneko
    Yusuke Yoshida
    Xiao Zhao
    Chengzhou Zhu
    [J]. Nano-Micro Letters, 2020, 12 (11) : 285 - 295
  • [5] Secondary-Atom-Doping Enables Robust Fe-N-C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction
    Luo, Xin
    Wei, Xiaoqian
    Wang, Hengjia
    Gu, Wenling
    Kaneko, Takuma
    Yoshida, Yusuke
    Zhao, Xiao
    Zhu, Chengzhou
    [J]. NANO-MICRO LETTERS, 2020, 12 (01)
  • [6] Laser driven generation of single atom Fe-N-C catalysts for the oxygen reduction reaction
    Madrid, Ainhoa
    Tolosana-Moranchel, Alvaro
    Garcia, Alvaro
    Rojas, Sergio
    Bartolome, Fernando
    Pakrieva, Ekaterina
    Simonelli, Laura
    Martinez, Gema
    Hueso, Jose L.
    Santamaria, Jesus
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [7] High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media
    Tian, Hao
    Song, Ailing
    Zhang, Peng
    Sun, Kaian
    Wang, Jingjing
    Sun, Bing
    Fan, Qiaohui
    Shao, Guangjie
    Chen, Chen
    Liu, Hao
    Li, Yadong
    Wang, Guoxiu
    [J]. ADVANCED MATERIALS, 2023, 35 (14)
  • [8] Rational Design of Heteroatom-Doped Fe-N-C Single-Atom Catalysts for Oxygen Reduction Reaction via Simple Descriptor
    Liu, Jin
    Zhu, Jiqin
    Xu, Haoxiang
    Cheng, Daojian
    [J]. ACS CATALYSIS, 2024, 14 (09): : 6952 - 6964
  • [9] Self-Adjusting Activity Induced by Intrinsic Reaction Intermediate in Fe-N-C Single-Atom Catalysts
    Wang, Yu
    Tang, Yu-Jia
    Zhou, Kun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (36) : 14115 - 14119
  • [10] Impact of Active Site Density on Oxygen Reduction Reactions Using Monodispersed Fe-N-C Single-Atom Catalysts
    Han, Yulan
    Li, Qin-Kun
    Ye, Ke
    Luo, Yi
    Jiang, Jun
    Zhang, Guozhen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15271 - 15278