f(R) Cosmology in the First Order Formalism

被引:0
|
作者
D. Barraco
V. H. Hamity
H. Vucetich
机构
[1] Universidad Nacional de Córdoba,Fa.M.A.F.
[2] Universidad Nacional de La Plata,Observatorio Astronómico
来源
关键词
Cosmology; non-linear Lagrangian; Palatini approach;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work we consider those theories that are obtained from a Lagrangian density ℒT(R) = f(R)√{-g} + ℒM, that depends on the curvature scalar and a matter Lagrangian that does not depend on the connection, and apply Palatini's method to obtain the field equations. We start with a brief discussion of the field equations of the theory and apply them to a cosmological model described by the FRW metric. Then, we introduce an auxiliary metric to put the resultant equations into the form of GR with cosmological constant and coupling constant that are curvature depending. We show that we reproduce known results for the quadratic case. We find relations among the present values of the cosmological parameters q0, H0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {(G/G)}\limits^ \circ _0$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {(G/G)}\limits^{ \circ \circ } _0 $$ \end{document}. Next we use a simple perturbation scheme to find the departure in angular diameter distance with respect to General Relativity. Finally, we use the observational data to estimate the order of magnitude of what is essentially the departure of f(R) from linearity. The bound that we find for f″ (0) is so huge that permit almost any f(R). This is in the nature of things: the effect of higher order terms in f(R) are strongly suppressed by power of Planck's time 8πG0. In order to improve these bounds more research on mathematical aspects of these theories and experimental consequences is necessary.
引用
收藏
页码:533 / 547
页数:14
相关论文
共 50 条
  • [41] Constraining f (R) gravity in the Palatini formalism
    Sotiriou, TP
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) : 1253 - 1267
  • [42] Covariant Hamiltonian formalism for F(R)-gravity
    J. Klusoň
    B. Matouš
    General Relativity and Gravitation, 2021, 53
  • [43] FRW cosmology in f (R, T) gravity
    Godani, Nisha
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (02)
  • [44] Extended cosmology in Palatini f(R)-theories
    Pinto, P.
    Del Vecchio, L.
    Fatibene, L.
    Ferraris, M.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):
  • [45] Investigating f(R, φ) cosmology with equation of state
    Shamir, M. Farasat
    Malik, Adnan
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (07) : 752 - 760
  • [46] First-order thermodynamics of Horndeski cosmology
    Miranda, Marcello
    Giardino, Serena
    Giusti, Andrea
    Heisenberg, Lavinia
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [47] The role of energy conditions in f(R) cosmology
    Capozziello, S.
    Nojiri, S.
    Odintsov, S. D.
    PHYSICS LETTERS B, 2018, 781 : 99 - 106
  • [48] Quantum Cosmology of f(R, T) gravity
    Min-Xing Xu
    Tiberiu Harko
    Shi-Dong Liang
    The European Physical Journal C, 2016, 76
  • [49] Cosmology of F(R) nonlinear massive gravity
    Cai, Yi-Fu
    Saridakis, Emmanuel N.
    PHYSICAL REVIEW D, 2014, 90 (06):
  • [50] Palatini f (R) cosmology and Noether symmetry
    Roshan, Mahmood
    Shojai, Fatimah
    PHYSICS LETTERS B, 2008, 668 (03) : 238 - 240