f(R) Cosmology in the First Order Formalism

被引:0
|
作者
D. Barraco
V. H. Hamity
H. Vucetich
机构
[1] Universidad Nacional de Córdoba,Fa.M.A.F.
[2] Universidad Nacional de La Plata,Observatorio Astronómico
来源
General Relativity and Gravitation | 2002年 / 34卷
关键词
Cosmology; non-linear Lagrangian; Palatini approach;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work we consider those theories that are obtained from a Lagrangian density ℒT(R) = f(R)√{-g} + ℒM, that depends on the curvature scalar and a matter Lagrangian that does not depend on the connection, and apply Palatini's method to obtain the field equations. We start with a brief discussion of the field equations of the theory and apply them to a cosmological model described by the FRW metric. Then, we introduce an auxiliary metric to put the resultant equations into the form of GR with cosmological constant and coupling constant that are curvature depending. We show that we reproduce known results for the quadratic case. We find relations among the present values of the cosmological parameters q0, H0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {(G/G)}\limits^ \circ _0$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {(G/G)}\limits^{ \circ \circ } _0 $$ \end{document}. Next we use a simple perturbation scheme to find the departure in angular diameter distance with respect to General Relativity. Finally, we use the observational data to estimate the order of magnitude of what is essentially the departure of f(R) from linearity. The bound that we find for f″ (0) is so huge that permit almost any f(R). This is in the nature of things: the effect of higher order terms in f(R) are strongly suppressed by power of Planck's time 8πG0. In order to improve these bounds more research on mathematical aspects of these theories and experimental consequences is necessary.
引用
收藏
页码:533 / 547
页数:14
相关论文
共 50 条
  • [31] BFT FORMALISM AND FIRST-ORDER SYSTEMS
    AMORIM, R
    SOUZA, LES
    THIBES, R
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1995, 65 (02): : 355 - 359
  • [32] First order hyperbolic formalism for numerical relativity
    Bona, C
    Masso, J
    Seidel, E
    Stela, J
    PHYSICAL REVIEW D, 1997, 56 (06): : 3405 - 3415
  • [33] First-order formalism for bent brane
    Afonso, VI
    Bazeia, D
    Losano, L
    PHYSICS LETTERS B, 2006, 634 (5-6) : 526 - 530
  • [34] Multi-centered first order formalism
    Sergio Ferrara
    Alessio Marrani
    Andrey Shcherbakov
    Armen Yeranyan
    Journal of High Energy Physics, 2013
  • [35] Multi-centered first order formalism
    Ferrara, Sergio
    Marrani, Alessio
    Shcherbakov, Andrey
    Yeranyan, Armen
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [36] Asymptotics and Hamiltonians in a first-order formalism
    Ashtekar, Abhay
    Engle, Jonathan
    Sloan, David
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (09)
  • [37] First-order formalism for Alice string
    Acalapati, E.
    Ramadhan, H. S.
    ANNALS OF PHYSICS, 2024, 465
  • [38] On first-order formalism in string theory
    Losev, AS
    Marshakov, A
    Zeitlin, AM
    PHYSICS LETTERS B, 2006, 633 (2-3) : 375 - 381
  • [39] Covariant Hamiltonian formalism for F(R)-gravity
    Kluson, J.
    Matous, B.
    GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (11)
  • [40] Thermodynamics in f(R) gravity in the Palatini formalism
    Bamba, Kazuharu
    Geng, Chao-Qiang
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (06):