f(R) Cosmology in the First Order Formalism

被引:0
|
作者
D. Barraco
V. H. Hamity
H. Vucetich
机构
[1] Universidad Nacional de Córdoba,Fa.M.A.F.
[2] Universidad Nacional de La Plata,Observatorio Astronómico
来源
关键词
Cosmology; non-linear Lagrangian; Palatini approach;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work we consider those theories that are obtained from a Lagrangian density ℒT(R) = f(R)√{-g} + ℒM, that depends on the curvature scalar and a matter Lagrangian that does not depend on the connection, and apply Palatini's method to obtain the field equations. We start with a brief discussion of the field equations of the theory and apply them to a cosmological model described by the FRW metric. Then, we introduce an auxiliary metric to put the resultant equations into the form of GR with cosmological constant and coupling constant that are curvature depending. We show that we reproduce known results for the quadratic case. We find relations among the present values of the cosmological parameters q0, H0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {(G/G)}\limits^ \circ _0$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {(G/G)}\limits^{ \circ \circ } _0 $$ \end{document}. Next we use a simple perturbation scheme to find the departure in angular diameter distance with respect to General Relativity. Finally, we use the observational data to estimate the order of magnitude of what is essentially the departure of f(R) from linearity. The bound that we find for f″ (0) is so huge that permit almost any f(R). This is in the nature of things: the effect of higher order terms in f(R) are strongly suppressed by power of Planck's time 8πG0. In order to improve these bounds more research on mathematical aspects of these theories and experimental consequences is necessary.
引用
收藏
页码:533 / 547
页数:14
相关论文
共 50 条
  • [1] f(R) cosmology in the first order formalism
    Barraco, D
    Hamity, VH
    Vucetich, H
    GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (04) : 533 - 547
  • [2] Constraints on f(R) cosmology in the Palatini formalism
    Li, Baojiu
    Chan, K. C.
    Chu, M. -C.
    PHYSICAL REVIEW D, 2007, 76 (02)
  • [3] Interpretation of the first-order formalism of f(R)-type gravity and the corresponding second-order formalism
    Ezawa, Y
    Iwasaki, H
    Ohkuwa, Y
    Uegaki, T
    Yamada, N
    Yano, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (12): : 1141 - 1148
  • [4] Cosmology with a new f (R) gravity model in Palatini formalism
    Gogoi, Dhruba Jyoti
    Goswami, Umananda Dev
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (06):
  • [5] 1ST-ORDER FORMALISM OF F(R) GRAVITY
    HAMITY, VH
    BARRACO, DE
    GENERAL RELATIVITY AND GRAVITATION, 1993, 25 (05) : 461 - 471
  • [6] Bouncing cosmology in f (R, G) gravity by order reduction
    Barros, Bruno J.
    Teixeira, Elsa M.
    Vernieri, Daniele
    ANNALS OF PHYSICS, 2020, 419
  • [7] Cosmology of f (R,□R) gravity
    Carloni, Sante
    Rosa, Joao Luis
    Lemos, Jose P. S.
    PHYSICAL REVIEW D, 2019, 99 (10)
  • [8] f(R) Cosmology with torsion
    Capozziello, S.
    Cianci, R.
    Stornaiolo, C.
    Vignolo, S.
    PHYSICA SCRIPTA, 2008, 78 (06)
  • [9] Palatini f(R) cosmology
    Lee, Seokcheon
    MODERN PHYSICS LETTERS A, 2008, 23 (17-20) : 1388 - 1396
  • [10] Tracking f(R) cosmology
    Roshan, Mahmood
    Shojai, Fatimah
    PHYSICAL REVIEW D, 2009, 79 (10):