Geodesic Infinitesimal Deformations of Generalized Riemannian Spaces

被引:0
|
作者
Marija S. Najdanović
Ljubica S. Velimirović
Nenad O. Vesić
机构
[1] University of Priština in Kosovska Mitrovica,Department of Mathematics, Faculty of Sciences and Mathematics
[2] University of Niš,Faculty of Sciences and Mathematics
[3] Serbian Academy of Sciences and Art Mathematical Institute,undefined
来源
关键词
Generalized Riemannian space; geodesic deformation; geodesic mapping; infinitesimal deformation; rigidity; variation; Primary 32G10; 53C25; Secondary 53A45;
D O I
暂无
中图分类号
学科分类号
摘要
Infinitesimal deformations of subspaces of a generalized Riemannian space are studied in this paper. Variations of some geometric objects are found. Necessary and sufficient conditions which provide the existence of a geodesic infinitesimal deformation of a generalized Riemannian space are obtained. Basic equations of a geodesic infinitesimal deformation such as a system of differential equations which determined an infinitesimal deformation field are given.
引用
收藏
相关论文
共 50 条
  • [31] Generalized Geodesic Convex Functions on Riemannian Manifolds
    Kilicman, A.
    Saleh, W.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 1 - 11
  • [32] On Geodesic Convex and Generalized Geodesic Convex Functions over Riemannian Manifolds
    Shahi, Avanish
    Mishra, S. K.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FRONTIERS IN INDUSTRIAL AND APPLIED MATHEMATICS (FIAM-2018), 2018, 1975
  • [33] On generalized Riemannian spaces containing Riemannian subspaces
    S. M. Minčić
    L. S. Velimirović
    [J]. Russian Mathematics, 2007, 51 (11) : 30 - 34
  • [34] On Generalized Riemannian Spaces Containing Riemannian Subspaces
    Mincic, S. M.
    Velimirovic, L. S.
    [J]. RUSSIAN MATHEMATICS, 2007, 51 (11) : 30 - 34
  • [35] ON THE INFINITESIMAL AFFINE AND HOMOTHETIC DEFORMATIONS OF SUB-MANIFOLDS OF A RIEMANNIAN MANIFOLD
    HINEVA, ST
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1981, 34 (10): : 1351 - 1354
  • [36] Canonical Deformations of Pseudo-Riemannian Spaces
    Vashpanova, N.
    Podousova, T.
    Fedchenko, Ju
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2019, 2164
  • [37] Geodesic Flows on Riemannian g.o. Spaces
    Jovanovic, Bozidar
    [J]. REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 504 - 513
  • [38] Geodesic flows on Riemannian g.o. spaces
    Božidar Jovanović
    [J]. Regular and Chaotic Dynamics, 2011, 16 : 504 - 513
  • [39] On geodesic mappings of Riemannian spaces with cyclic Ricci tensor
    Bacso, Sandor
    Tornai, Robert
    Horvath, Zoltan
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2014, 43 : 13 - 17
  • [40] On geodesic graphs of Riemannian g.o. spaces
    Kowalski, O
    Nikcevic, SZ
    [J]. ARCHIV DER MATHEMATIK, 1999, 73 (03) : 223 - 234