Spectrum Monitoring Based on End-to-End Learning by Deep Learning

被引:0
|
作者
Mahdiyeh Rahmani
Reza Ghazizadeh
机构
[1] Birjand University,Department of Telecommunication Engineering, Faculty of Electrical and Computer Engineering
关键词
Machine learning; Spectrum monitoring; Modulation recognition; Wireless technology; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Numerous autonomous wireless deployments have become invaluable for understanding and investigating the radio frequency environment. However, machine learning techniques have their drawbacks and there are situations where such strategies are unreliable. The purpose of the present paper is to present an end-to-end learning framework based on deep learning (DL) and to evaluate different methods of wireless signal classifiers implementation and signal representation for spectrum monitoring. Furthermore, we tend to investigate the significance of wireless data representation selection for varied spectrum monitoring tasks. For each case study, modulation recognition (MR) and wireless interference identification (IId), three deep learning networks are evaluated for the subsequent wireless signal representations, temporal I/Q data, the amplitude/phase, frequency domain and Hilbert and wavelet transform representations. From our analysis, the accuracy of wireless signal identification is proved to be affected by the network classifier and wireless data representation. For different signal-to-noise ratio values, the classification accuracy of the three DL networks are evaluated. The results of the experiments indicate that the representation of data influences network accuracy. In MR case, in high SNR (18), the first, second and third networks have the best results in the db3 mother wavelet, amplitude/phase and Hilbert samples, respectively. In the medium and low SNR (0, − 8) in all three networks, almost the best results is obtained from Hilbert data representation with the accuracy variation up to 4%. In IId case, for three SNR (− 8, 0, 18) in the three presented networks almost the best results is obtained from the FFT and wavelet data representations with 0.5% accuracy variations.
引用
下载
收藏
页码:180 / 192
页数:12
相关论文
共 50 条
  • [41] An End-to-End Detection Method for WebShell with Deep Learning
    Qi, Longchen
    Kong, Rui
    Lu, Yang
    Zhuang, Honglin
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 660 - 665
  • [42] End-to-End Deep Learning for Driver Distraction Recognition
    Koesdwiady, Arief
    Bedawi, Safaa M.
    Ou, Chaojie
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 11 - 18
  • [43] An End-to-End Deep Learning System for Hop Classification
    Castro, Pedro
    Moreira, Gladston
    Luz, Eduardo
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (03) : 430 - 442
  • [44] End-to-End Race Driving with Deep Reinforcement Learning
    Jaritz, Maximilian
    de Charette, Raoul
    Toromanoff, Marin
    Perot, Etienne
    Nashashibi, Fawzi
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 2070 - 2075
  • [45] NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning
    Haj-Ali, Ameer
    Ahmed, Nesreen K.
    Willke, Ted
    Shao, Yakun Sophia
    Asanovic, Krste
    Stoica, Ion
    CGO'20: PROCEEDINGS OF THE18TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, 2020, : 242 - 255
  • [46] End-to-End Deep Reinforcement Learning for Exoskeleton Control
    Rose, Lowell
    Bazzocchi, Michael C. F.
    Nejat, Goldie
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4294 - 4301
  • [47] NetGraf: An End-to-End Learning Network Monitoring Service
    Mohammed, Bashir
    Kiran, Mariam
    Enders, Bjoern
    PROCEEDINGS OF 8TH WORKSHOP ON INNOVATING THE NETWORK FOR DATA-INTENSIVE SCIENCE (INDIS 2021), 2021, : 12 - 22
  • [48] Learning deep structured active contours end-to-end
    Marcos, Diego
    Tuia, Devis
    Kellenberger, Benjamin
    Zhang, Lisa
    Bai, Min
    Liao, Renjie
    Urtasun, Raquel
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8877 - 8885
  • [49] Satellite selection with an end-to-end deep learning network
    Panpan Huang
    Chris Rizos
    Craig Roberts
    GPS Solutions, 2018, 22
  • [50] End-To-End Deep Learning Framework for Coronavirus (COVID-19) Detection and Monitoring
    El-Rashidy, Nora
    El-Sappagh, Shaker
    Islam, S. M. Riazul
    El-Bakry, Hazem M.
    Abdelrazek, Samir
    ELECTRONICS, 2020, 9 (09) : 1 - 25