Spectrum Monitoring Based on End-to-End Learning by Deep Learning

被引:0
|
作者
Mahdiyeh Rahmani
Reza Ghazizadeh
机构
[1] Birjand University,Department of Telecommunication Engineering, Faculty of Electrical and Computer Engineering
关键词
Machine learning; Spectrum monitoring; Modulation recognition; Wireless technology; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Numerous autonomous wireless deployments have become invaluable for understanding and investigating the radio frequency environment. However, machine learning techniques have their drawbacks and there are situations where such strategies are unreliable. The purpose of the present paper is to present an end-to-end learning framework based on deep learning (DL) and to evaluate different methods of wireless signal classifiers implementation and signal representation for spectrum monitoring. Furthermore, we tend to investigate the significance of wireless data representation selection for varied spectrum monitoring tasks. For each case study, modulation recognition (MR) and wireless interference identification (IId), three deep learning networks are evaluated for the subsequent wireless signal representations, temporal I/Q data, the amplitude/phase, frequency domain and Hilbert and wavelet transform representations. From our analysis, the accuracy of wireless signal identification is proved to be affected by the network classifier and wireless data representation. For different signal-to-noise ratio values, the classification accuracy of the three DL networks are evaluated. The results of the experiments indicate that the representation of data influences network accuracy. In MR case, in high SNR (18), the first, second and third networks have the best results in the db3 mother wavelet, amplitude/phase and Hilbert samples, respectively. In the medium and low SNR (0, − 8) in all three networks, almost the best results is obtained from Hilbert data representation with the accuracy variation up to 4%. In IId case, for three SNR (− 8, 0, 18) in the three presented networks almost the best results is obtained from the FFT and wavelet data representations with 0.5% accuracy variations.
引用
下载
收藏
页码:180 / 192
页数:12
相关论文
共 50 条
  • [21] Optical Fiber Communication Systems Based on End-to-End Deep Learning
    Karanov, Boris
    Chagnon, Mathieu
    Aref, Vahid
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [22] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang, Zhiqing
    Zhang, Ji
    Tian, Rui
    Zhang, Yanxin
    CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 658 - 662
  • [23] End-to-End Deep Reinforcement Learning based Recommendation with Supervised Embedding
    Liu, Feng
    Guo, Huifeng
    Li, Xutao
    Tang, Ruiming
    Ye, Yunming
    He, Xiuqiang
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 384 - 392
  • [24] Deep Learning based End-to-End Rolling Bearing Fault Diagnosis
    Li, Yongjie
    Qiu, Bohua
    Wei, Muheng
    Sun, Wenqiushi
    Liu, Xueliang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [25] A Deep Learning-Based End-To-End CT Reconstruction Method
    Lu, K.
    Ren, L.
    Yin, F.
    MEDICAL PHYSICS, 2020, 47 (06) : E507 - E508
  • [26] A New End-to-end Modulation Recognition Algorithm Based on Deep Learning
    Gao, Jingpeng
    Wang, Fu
    Gao, Lu
    Wang, Xu
    PROCEEDINGS OF 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2020), 2020, : 346 - 350
  • [27] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang Z.-Q.
    Qu Z.-W.
    Zhang J.
    Zhang Y.-X.
    Tian R.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (09): : 1711 - 1719
  • [28] An End-to-End Robotic Visual Localization Algorithm Based on Deep Learning
    Wang, Hongcheng
    Chen, Niansheng
    Fan, Guangyu
    Yang, Dingyu
    Rao, Lei
    Cheng, Songlin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [29] An End-to-End Robotic Visual Localization Algorithm Based on Deep Learning
    Chen, Niansheng
    Wang, Hongcheng
    Fan, Guangyu
    Yang, Dingyu
    Rao, Lei
    JOURNAL OF SENSORS, 2023, 2023
  • [30] End-to-end driving model based on deep learning and attention mechanism
    Zhu, Wuqiang
    Lu, Yang
    Zhang, Yongliang
    Wei, Xing
    Wei, Zhen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3337 - 3348