Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations

被引:0
|
作者
Clément Cancès
Mathieu Cathala
Christophe Le Potier
机构
[1] LJLL-UPMC Paris 06,Institut de Mathématiques et de Modélisation de Montpellier
[2] Université Montpellier 2,undefined
[3] CEA-Saclay,undefined
[4] DEN,undefined
[5] DM2S,undefined
[6] STMF,undefined
[7] LMEC,undefined
来源
Numerische Mathematik | 2013年 / 125卷
关键词
65N08; 65N12; 35J05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a nonlinear technique to correct a general finite volume scheme for anisotropic diffusion problems, which provides a discrete maximum principle. We point out general properties satisfied by many finite volume schemes and prove the proposed corrections also preserve these properties. We then study two specific corrections proving, under numerical assumptions, that the corresponding approximate solutions converge to the continuous one as the size of the mesh tends to zero. Finally we present numerical results showing that these corrections suppress local minima produced by the original finite volume scheme.
引用
收藏
页码:387 / 417
页数:30
相关论文
共 50 条
  • [31] A nominally second-order accurate finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids
    Maire, Pierre-Henri
    Breil, Jerome
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (05) : 2259 - 2299
  • [32] A CELL-CENTERED MULTIGRID SOLVER FOR THE FINITE VOLUME DISCRETIZATION OF ANISOTROPIC ELLIPTIC INTERFACE PROBLEMS ON IRREGULAR DOMAINS*
    Pan, Kejia
    Wu, Xiaoxin
    Hu, Hongling
    Li, Zhilin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023,
  • [33] A CELL-CENTERED MULTIGRID SOLVER FOR THE FINITE VOLUME DISCRETIZATION OF ANISOTROPIC ELLIPTIC INTERFACE PROBLEMS ON IRREGULAR DOMAINS
    Pan, Kejia
    Wu, Xiaoxin
    Hu, Hongling
    Li, Zhilin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (01): : 18 - 42
  • [34] A monotone finite volume element scheme for diffusion equations on
    Nie, Cunyun
    Fang, Jianglin
    Shu, Shi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 153 : 225 - 236
  • [35] Robust multigrid preconditioners for cell-centered finite volume discretization of the high-contrast diffusion equation
    Aksoylu, Burak
    Yeter, Zuhal
    COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (05) : 229 - 245
  • [36] A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations
    Tremblin, Pascal
    Bulteau, Solene
    Kokh, Samuel
    Padioleau, Thomas
    Delorme, Maxime
    Strugarek, Antoine
    Gonzalez, Matthias
    Brun, Allan Sacha
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [37] POSITIVE CELL-CENTERED FINITE-VOLUME DISCRETIZATION METHODS FOR HYPERBOLIC-EQUATIONS ON IRREGULAR MESHES
    BERZINS, M
    WARE, JM
    APPLIED NUMERICAL MATHEMATICS, 1995, 16 (04) : 417 - 438
  • [38] A nonlinear correction and maximum principle for diffusion operators discretized using cell-centered finite volume schemes
    Le Potier, Christophe
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (11-12) : 691 - 695
  • [39] Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids
    Lee, Euntaek
    Ahn, Hyung Taek
    Luo, Hong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 464 - 491
  • [40] Extrapolation Cascadic Multigrid Method for Cell-Centered FV Discretization of Diffusion Equations with Strongly Discontinuous and Anisotropic Coefficients
    Pan, Kejia
    Wu, Xiaoxin
    Yu, Yunlong
    Sheng, Zhiqiang
    Yuan, Guangwei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (05) : 1561 - 1584