Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations

被引:0
|
作者
Clément Cancès
Mathieu Cathala
Christophe Le Potier
机构
[1] LJLL-UPMC Paris 06,Institut de Mathématiques et de Modélisation de Montpellier
[2] Université Montpellier 2,undefined
[3] CEA-Saclay,undefined
[4] DEN,undefined
[5] DM2S,undefined
[6] STMF,undefined
[7] LMEC,undefined
来源
Numerische Mathematik | 2013年 / 125卷
关键词
65N08; 65N12; 35J05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a nonlinear technique to correct a general finite volume scheme for anisotropic diffusion problems, which provides a discrete maximum principle. We point out general properties satisfied by many finite volume schemes and prove the proposed corrections also preserve these properties. We then study two specific corrections proving, under numerical assumptions, that the corresponding approximate solutions converge to the continuous one as the size of the mesh tends to zero. Finally we present numerical results showing that these corrections suppress local minima produced by the original finite volume scheme.
引用
收藏
页码:387 / 417
页数:30
相关论文
共 50 条