Finiteness conditions on subgroups of profinite p-Poincaré duality groups

被引:0
|
作者
Dessislava H. Kochloukova
Aline G. S. Pinto
机构
[1] IMECC-UNICAMP,Department of Mathematics
[2] University of Brasília,undefined
来源
关键词
Euler Characteristic; Duality Group; Open Subgroup; Projective Resolution; Galois Cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p let G be a profinite p-PDn group with a closed normal subgroup N such that G/N is a profinite p-PDm group and that Hi(V, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{F} $$\end{document}p) is finite for every open subgroup V of N and all i ≤ [n/2]. Generalising [12, Thm. 3.7.4] we show that m ≤ n and N is a profinite p-PDn − m group.
引用
收藏
页码:367 / 377
页数:10
相关论文
共 50 条