Finiteness conditions on subgroups of profinite p-Poincaré duality groups

被引:0
|
作者
Dessislava H. Kochloukova
Aline G. S. Pinto
机构
[1] IMECC-UNICAMP,Department of Mathematics
[2] University of Brasília,undefined
来源
关键词
Euler Characteristic; Duality Group; Open Subgroup; Projective Resolution; Galois Cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p let G be a profinite p-PDn group with a closed normal subgroup N such that G/N is a profinite p-PDm group and that Hi(V, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{F} $$\end{document}p) is finite for every open subgroup V of N and all i ≤ [n/2]. Generalising [12, Thm. 3.7.4] we show that m ≤ n and N is a profinite p-PDn − m group.
引用
收藏
页码:367 / 377
页数:10
相关论文
共 50 条
  • [31] Finite index subgroups in profinite groups
    Nikolov, N
    Segal, D
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (05) : 303 - 308
  • [32] On verbal subgroups in finite and profinite groups
    Acciarri, Cristina
    Shumyatsky, Pavel
    ALGEBRA & DISCRETE MATHEMATICS, 2012, 14 (01): : 1 - 13
  • [33] Profinite groups with abelian Sylow subgroups
    Lopes, Lucas C.
    Shumyatsky, Pavel
    Zalesskii, Pavel A.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) : 224 - 232
  • [34] WORDS AND PRONILPOTENT SUBGROUPS IN PROFINITE GROUPS
    Khukhro, E. I.
    Shumyatsky, P.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 97 (03) : 343 - 364
  • [35] SUBGROUPS OF FINITE INDEX IN PROFINITE GROUPS
    HARTLEY, B
    MATHEMATISCHE ZEITSCHRIFT, 1979, 168 (01) : 71 - 76
  • [36] Commutators and pronilpotent subgroups in profinite groups
    Eloisa Detomi
    Marta Morigi
    Pavel Shumyatsky
    Monatshefte für Mathematik, 2014, 175 : 117 - 125
  • [37] Classifying spaces of subgroups of profinite groups
    Gartside, Paul
    Smith, Michael
    JOURNAL OF GROUP THEORY, 2010, 13 (03) : 315 - 336
  • [38] SUBGROUPS OF PROFINITE GROUPS ACTING ON TREES
    ZALESSKII, PA
    MELNIKOV, OV
    MATHEMATICS OF THE USSR-SBORNIK, 1988, 135 (3-4): : 405 - 424
  • [39] Closed subgroups of free profinite monoids are projective profinite groups
    Rhodes, John
    Steinberg, Benjamin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 375 - 383
  • [40] Sharp p-Poincaré inequalities under measure contraction property
    Bang-Xian Han
    manuscripta mathematica, 2020, 162 : 457 - 471