Poincar, duality for p-adic Lie groups

被引:1
|
作者
Huber, Annette [1 ]
机构
[1] Univ Freiburg, Inst Math, D-79102 Freiburg, Germany
关键词
p-adic Lie Groups; Group cohomology; Duality;
D O I
10.1007/s00013-010-0198-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish Poincar, duality for continuous group cohomology of p-adic Lie groups with rational coefficients and compare integral structures under this duality.
引用
收藏
页码:509 / 517
页数:9
相关论文
共 50 条
  • [1] Poincaré duality for p-adic Lie groups
    Annette Huber
    Archiv der Mathematik, 2010, 95 : 509 - 517
  • [2] p-adic Lie groups
    Hunacek, Mark
    MATHEMATICAL GAZETTE, 2014, 98 (541): : 165 - 166
  • [3] Integrating on p-adic Lie groups
    du Sautoy, MPF
    Everest, GR
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 103 (1) : 207 - 235
  • [4] Approximation by p-adic Lie groups
    Glöckner, H
    GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 231 - 239
  • [5] Uniscalar p-adic Lie groups
    Glöckner, H
    Willis, GA
    FORUM MATHEMATICUM, 2001, 13 (03) : 413 - 421
  • [6] Duality for K-analytic Group Cohomology of p-adic Lie Groups
    Thomas, Oliver
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 1213 - 1226
  • [7] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [8] ENDOMORPHISM ALGEBRAS OF ADMISSIBLE p-ADIC REPRESENTATIONS OF p-ADIC LIE GROUPS
    Dospinescu, Gabriel
    Schraen, Benjamin
    REPRESENTATION THEORY, 2013, 17 : 237 - 246
  • [9] Definable groups and compact p-adic Lie groups
    Onshuus, A.
    Pillay, A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 233 - 247
  • [10] Hochschild cohomology and p-adic Lie groups
    Sorensen, Claus
    MUENSTER JOURNAL OF MATHEMATICS, 2021, 14 (01): : 101 - 122