Uniscalar p-adic Lie groups

被引:13
|
作者
Glöckner, H
Willis, GA
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Univ Newcastle, Dept Math, Newcastle, NSW 2308, Australia
关键词
D O I
10.1515/form.2001.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A totally disconnected, locally compact group G is said to be uniscalar if its scale function SG : G --> N, as defined in [G. A. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), 341-363], is identically I. It is known that G is uniscalar if and only if every element of G normalizes some open, compact subgroup of G. We show that every identity neighbourhood of a compactly generated, uniscalar p-adic Lie group contains an open, compact, normal subgroup. In contrast, uniscalar p-adic Lie groups which are not compactly generated need not possess open, compact, normal subgroups.
引用
收藏
页码:413 / 421
页数:9
相关论文
共 50 条
  • [1] p-adic Lie groups
    Hunacek, Mark
    [J]. MATHEMATICAL GAZETTE, 2014, 98 (541): : 165 - 166
  • [2] Integrating on p-adic Lie groups
    du Sautoy, MPF
    Everest, GR
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 103 (1) : 207 - 235
  • [3] Approximation by p-adic Lie groups
    Glöckner, H
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 231 - 239
  • [4] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [5] ENDOMORPHISM ALGEBRAS OF ADMISSIBLE p-ADIC REPRESENTATIONS OF p-ADIC LIE GROUPS
    Dospinescu, Gabriel
    Schraen, Benjamin
    [J]. REPRESENTATION THEORY, 2013, 17 : 237 - 246
  • [6] Definable groups and compact p-adic Lie groups
    Onshuus, A.
    Pillay, A.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 233 - 247
  • [7] Hochschild cohomology and p-adic Lie groups
    Sorensen, Claus
    [J]. MUENSTER JOURNAL OF MATHEMATICS, 2021, 14 (01): : 101 - 122
  • [8] Scale functions on p-adic Lie groups
    Glockner, H
    [J]. MANUSCRIPTA MATHEMATICA, 1998, 97 (02) : 205 - 215
  • [9] Poincar, duality for p-adic Lie groups
    Huber, Annette
    [J]. ARCHIV DER MATHEMATIK, 2010, 95 (06) : 509 - 517
  • [10] Mackey Theory for p-adic Lie Groups
    Bing Yong HSIE
    [J]. Acta Mathematica Sinica,English Series, 2006, 22 (02) : 507 - 514