Scale functions on p-adic Lie groups

被引:23
|
作者
Glockner, H [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
D O I
10.1007/s002290050097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a p-adic Lie group. Then G is a locally compact, totally disconnected group, to which Willis [14] associates its scale function s: G --> N. We show that s can be computed on the Lie algebra level. The image of s consists of powers of p. If G is a linear algebraic group over Q(p), s(x) = s(h) is determined by the semisimple part h of x is an element of G. For every finite extension K of Q(p), the scale functions of G and H := G(K) are related by s(H \ G) = s(G)([K:QP]). More generally, we clarify the relations between the scale function of a p-adic Lie group and the scale functions of its closed subgroups and Hausdorff quotients.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 50 条
  • [1] p-adic Lie groups
    Hunacek, Mark
    [J]. MATHEMATICAL GAZETTE, 2014, 98 (541): : 165 - 166
  • [2] Scale functions on $p$-adic Lie groups
    Helge Glöckner
    [J]. manuscripta mathematica, 1998, 97 : 205 - 215
  • [3] Integrating on p-adic Lie groups
    du Sautoy, MPF
    Everest, GR
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 103 (1) : 207 - 235
  • [4] Approximation by p-adic Lie groups
    Glöckner, H
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 231 - 239
  • [5] Uniscalar p-adic Lie groups
    Glöckner, H
    Willis, GA
    [J]. FORUM MATHEMATICUM, 2001, 13 (03) : 413 - 421
  • [6] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [7] ENDOMORPHISM ALGEBRAS OF ADMISSIBLE p-ADIC REPRESENTATIONS OF p-ADIC LIE GROUPS
    Dospinescu, Gabriel
    Schraen, Benjamin
    [J]. REPRESENTATION THEORY, 2013, 17 : 237 - 246
  • [8] Definable groups and compact p-adic Lie groups
    Onshuus, A.
    Pillay, A.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 233 - 247
  • [9] Hochschild cohomology and p-adic Lie groups
    Sorensen, Claus
    [J]. MUENSTER JOURNAL OF MATHEMATICS, 2021, 14 (01): : 101 - 122
  • [10] Poincar, duality for p-adic Lie groups
    Huber, Annette
    [J]. ARCHIV DER MATHEMATIK, 2010, 95 (06) : 509 - 517