On the Second Eigenvalue of Random Bipartite Biregular Graphs

被引:0
|
作者
Yizhe Zhu
机构
[1] University of California Irvine,Department of Mathematics
来源
关键词
Random bipartite biregular graph; Spectral gap; Switching; Size biased coupling; Primary 60C05; 60B20; Secondary 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the spectral gap of a uniformly chosen random (d1,d2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2)$$\end{document}-biregular bipartite graph G with |V1|=n,|V2|=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_1|=n, |V_2|=m$$\end{document}, where d1,d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1,d_2$$\end{document} could possibly grow with n and m. Let A be the adjacency matrix of G. Under the assumption that d1≥d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1\ge d_2$$\end{document} and d2=O(n2/3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=O(n^{2/3}),$$\end{document} we show that λ2(A)=O(d1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2(A)=O(\sqrt{d_1})$$\end{document} with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d-regular digraph is O(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{d})$$\end{document} for 1≤d≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le d\le n/2$$\end{document} with high probability. Assuming d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2$$\end{document} is fixed and d1=O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=O(n^2)$$\end{document}, we further prove that for a random (d1,d2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2)$$\end{document}-biregular bipartite graph, |λi2(A)-d1|=O(d1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\lambda _i^2(A)-d_1|=O(\sqrt{d_1})$$\end{document} for all 2≤i≤n+m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le i\le n+m-1$$\end{document} with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d-regular graphs and several new switching operations we define for random bipartite biregular graphs.
引用
收藏
页码:1269 / 1303
页数:34
相关论文
共 50 条
  • [41] THE NUMBER OF MATCHINGS IN RANDOM REGULAR GRAPHS AND BIPARTITE GRAPHS
    BOLLOBAS, B
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) : 80 - 91
  • [42] The choice number of random bipartite graphs
    Noga Alon
    Michael Krivelevich
    Annals of Combinatorics, 1998, 2 (4) : 291 - 297
  • [43] Planar bipartite biregular degree sequences
    Adams, Patrick
    Nikolayevsky, Yuri
    DISCRETE MATHEMATICS, 2019, 342 (02) : 433 - 440
  • [44] The largest eigenvalue of sparse random graphs
    Krivelevich, M
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 61 - 72
  • [45] Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
    Vengerovsky, V.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2014, 10 (02) : 240 - 255
  • [46] Graphs with high second eigenvalue multiplicity
    Haiman, Milan
    Schildkraut, Carl
    Zhang, Shengtong
    Zhao, Yufei
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (05) : 1630 - 1652
  • [47] Interval coloring of (3,4)-biregular bipartite graphs having large cubic subgraphs
    Pyatkin, AV
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 122 - 128
  • [48] On the maximum second eigenvalue of outerplanar graphs
    Brooks, George
    Gu, Maggie
    Hyatt, Jack
    Linz, William
    Lu, Linyuan
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [49] On the second largest eigenvalue of line graphs
    Petrovic, M
    Milekic, B
    JOURNAL OF GRAPH THEORY, 1998, 27 (02) : 61 - 66
  • [50] On non-bipartite graphs with strong reciprocal eigenvalue property
    Barik, Sasmita
    Mishra, Rajiv
    Pati, Sukanta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 107 - 128