On the Second Eigenvalue of Random Bipartite Biregular Graphs

被引:0
|
作者
Yizhe Zhu
机构
[1] University of California Irvine,Department of Mathematics
来源
关键词
Random bipartite biregular graph; Spectral gap; Switching; Size biased coupling; Primary 60C05; 60B20; Secondary 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the spectral gap of a uniformly chosen random (d1,d2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2)$$\end{document}-biregular bipartite graph G with |V1|=n,|V2|=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_1|=n, |V_2|=m$$\end{document}, where d1,d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1,d_2$$\end{document} could possibly grow with n and m. Let A be the adjacency matrix of G. Under the assumption that d1≥d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1\ge d_2$$\end{document} and d2=O(n2/3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=O(n^{2/3}),$$\end{document} we show that λ2(A)=O(d1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2(A)=O(\sqrt{d_1})$$\end{document} with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d-regular digraph is O(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{d})$$\end{document} for 1≤d≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le d\le n/2$$\end{document} with high probability. Assuming d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2$$\end{document} is fixed and d1=O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=O(n^2)$$\end{document}, we further prove that for a random (d1,d2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2)$$\end{document}-biregular bipartite graph, |λi2(A)-d1|=O(d1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\lambda _i^2(A)-d_1|=O(\sqrt{d_1})$$\end{document} for all 2≤i≤n+m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le i\le n+m-1$$\end{document} with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d-regular graphs and several new switching operations we define for random bipartite biregular graphs.
引用
收藏
页码:1269 / 1303
页数:34
相关论文
共 50 条
  • [31] Complete Graphs and Bipartite Graphs in a Random Graph
    Feng, Lijin
    Barr, Jackson
    2021 5TH INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2021), 2021, : 259 - 266
  • [32] DECOMPOSITION OF RANDOM GRAPHS INTO COMPLETE BIPARTITE GRAPHS
    Chung, Fan
    Peng, Xing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (01) : 296 - 310
  • [33] The first eigenvalue of random graphs
    Janson, S
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (5-6): : 815 - 828
  • [34] Large regular bipartite graphs with median eigenvalue 1
    Guo, Krystal
    Mohar, Bojan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 68 - 75
  • [35] Estrada Index of Random Bipartite Graphs
    Shang, Yilun
    SYMMETRY-BASEL, 2015, 7 (04): : 2195 - 2205
  • [36] The random bipartite nearest neighbor graphs
    Pittel, B
    Weishaar, RS
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 279 - 310
  • [37] Sandpile Groups of Random Bipartite Graphs
    Koplewitz, Shaked
    ANNALS OF COMBINATORICS, 2023, 27 (01) : 1 - 18
  • [38] INVARIANT BIPARTITE RANDOM GRAPHS ON Rd
    Lopes, Fabio
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 769 - 779
  • [39] More on the Bipartite Decomposition of Random Graphs
    Alon, Noga
    Bohman, Tom
    Huang, Hao
    JOURNAL OF GRAPH THEORY, 2017, 84 (01) : 45 - 52
  • [40] Sandpile Groups of Random Bipartite Graphs
    Shaked Koplewitz
    Annals of Combinatorics, 2023, 27 : 1 - 18