On the Second Eigenvalue of Random Bipartite Biregular Graphs

被引:0
|
作者
Yizhe Zhu
机构
[1] University of California Irvine,Department of Mathematics
来源
关键词
Random bipartite biregular graph; Spectral gap; Switching; Size biased coupling; Primary 60C05; 60B20; Secondary 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the spectral gap of a uniformly chosen random (d1,d2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2)$$\end{document}-biregular bipartite graph G with |V1|=n,|V2|=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_1|=n, |V_2|=m$$\end{document}, where d1,d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1,d_2$$\end{document} could possibly grow with n and m. Let A be the adjacency matrix of G. Under the assumption that d1≥d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1\ge d_2$$\end{document} and d2=O(n2/3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=O(n^{2/3}),$$\end{document} we show that λ2(A)=O(d1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2(A)=O(\sqrt{d_1})$$\end{document} with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d-regular digraph is O(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{d})$$\end{document} for 1≤d≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le d\le n/2$$\end{document} with high probability. Assuming d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2$$\end{document} is fixed and d1=O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=O(n^2)$$\end{document}, we further prove that for a random (d1,d2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2)$$\end{document}-biregular bipartite graph, |λi2(A)-d1|=O(d1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\lambda _i^2(A)-d_1|=O(\sqrt{d_1})$$\end{document} for all 2≤i≤n+m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le i\le n+m-1$$\end{document} with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d-regular graphs and several new switching operations we define for random bipartite biregular graphs.
引用
收藏
页码:1269 / 1303
页数:34
相关论文
共 50 条
  • [1] On the Second Eigenvalue of Random Bipartite Biregular Graphs
    Zhu, Yizhe
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 1269 - 1303
  • [2] Global eigenvalue fluctuations of random biregular bipartite graphs
    Dumitriu, Ioana
    Zhu, Yizhe
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (03)
  • [3] GLOBAL EIGENVALUE FLUCTUATIONS OF RANDOM BIREGULAR BIPARTITE GRAPHS
    Dumitriu, Ioana
    Zhu, Yizhe
    arXiv, 2020,
  • [4] Matchings in Random Biregular Bipartite Graphs
    Perarnau, Guillem
    Petridis, Giorgis
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [5] Spectral gap in random bipartite biregular graphs and applications
    Brito, Gerandy
    Dumitriu, Ioana
    Harris, Kameron Decker
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (02): : 229 - 267
  • [6] DISTANCE BIREGULAR BIPARTITE GRAPHS
    DELORME, C
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (03) : 223 - 238
  • [7] Bipartite biregular Moore graphs
    Araujo-Pardo, G.
    Dalfo, C.
    Fiol, M. A.
    Lopez, N.
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [8] The Marenko-Pastur law for sparse random bipartite biregular graphs
    Dumitriu, Ioana
    Johnson, Tobias
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (02) : 313 - 340
  • [9] On biregular bipartite graphs of small excess
    Filipovski, Slobodan
    Rivera, Alejandra Ramos
    Jajcay, Robert
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2066 - 2076
  • [10] Antimagic orientation of biregular bipartite graphs
    Shan, Songling
    Yu, Xiaowei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):