Quantization Formula for Symplectic Manifolds with Boundary

被引:0
|
作者
Y. Tian
W. Zhang
机构
[1] CUNY Graduate Center and NYU Courant Institute,
[2] New York,undefined
[3] USA,undefined
[4] Nankai Inst. of Math.,undefined
[5] Nankai University,undefined
[6] Tianjin 300071,undefined
[7] People's Republic of China,undefined
[8] e-mail: weiping@sun.nankai.edu.cn,undefined
来源
关键词
Analytic Approach; Symplectic Manifold; Analytic Analogue; General Quantization; Simple Application;
D O I
暂无
中图分类号
学科分类号
摘要
We extend our earlier work in [TiZ1], where an analytic approach to the Guillemin-Sternberg geometric quantization conjecture [GuSt] was developed, to the case of manifolds with boundary. We also give a general quantization formula that works for both regular and singular reductions. As simple applications, we prove an analytic analogue of the relative residue formula of Guillemin-Kalkman [GuK] and Martin [M], as well as a Guillemin-Sternberg type formula for singular reductions under circle actions.
引用
收藏
页码:596 / 640
页数:44
相关论文
共 50 条
  • [31] POISSON SUMMATION FORMULA FOR MANIFOLDS WITH BOUNDARY
    GUILLEMIN, V
    MELROSE, R
    [J]. ADVANCES IN MATHEMATICS, 1979, 32 (03) : 204 - 232
  • [32] Holomorphic Lefschetz formula for manifolds with boundary
    A. Kytmanov
    S. Myslivets
    N. Tarkhanov
    [J]. Mathematische Zeitschrift, 2004, 246 : 769 - 794
  • [33] The Schlafli formula in Einstein manifolds with boundary
    Rivin, I
    Schlenker, JM
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 : 18 - 23
  • [34] Berezin-Toeplitz Quantization for Eigenstates of the Bochner Laplacian on Symplectic Manifolds
    Ioos, Louis
    Lu, Wen
    Ma, Xiaonan
    Marinescu, George
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2615 - 2646
  • [35] Bohr-Sommerfeld quantization of b-symplectic toric manifolds
    Mir, Pau
    Miranda, Eva
    Weitsman, Jonathan
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (04) : 2169 - 2194
  • [36] Non-Abelian Symplectic Cuts and the Geometric Quantization of Noncompact Manifolds
    Jonathan Weitsman
    [J]. Letters in Mathematical Physics, 2001, 56 : 31 - 40
  • [37] An algebra of deformation quantization for star-exponentials on complex symplectic manifolds
    Dito, Giuseppe
    Schapira, Pierre
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 395 - 414
  • [38] An Algebra of Deformation Quantization for Star-Exponentials on Complex Symplectic Manifolds
    Giuseppe Dito
    Pierre Schapira
    [J]. Communications in Mathematical Physics, 2007, 273 : 395 - 414
  • [39] Quantization of symplectic dynamical r-matrices and the quantum composition formula
    Alekseev, Anton
    Calaque, Damien
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (01) : 119 - 136
  • [40] Quantization of Symplectic Dynamical r-Matrices and the Quantum Composition Formula
    Anton Alekseev
    Damien Calaque
    [J]. Communications in Mathematical Physics, 2007, 273 : 119 - 136