Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length

被引:0
|
作者
Hamed Azimi
Hossein Bonakdari
Isa Ebtehaj
Bahram Gharabaghi
Fatemeh Khoshbin
机构
[1] Razi University,Environmental Research Center
[2] Razi University,Department of Civil Engineering
[3] University of Guelph,School of Engineering
来源
Acta Mechanica | 2018年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hydraulic jumps generally occur subsequent to structures such as ogee spillways, control gates, and weirs. The jump roller length is considered one of the main hydraulic jump parameters. In this study, the roller length of a hydraulic jump on a rough channel bed is predicted using a novel, evolutionary, generalized structure design of a group method of data handling (GS-GMDH)-type neural network. The topology of GMDH is designed with a genetic algorithm . Initially, the three most important non-dimensional parameters affecting hydraulic jump roller length, including the Froude number upstream of a hydraulic jump Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {Fr} \right) $$\end{document}, the ratio of sequent depths h2/h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{h_2 }/{h_1 }} \right) $$\end{document}, and the relative roughness ks/h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{ks}/{h_1 }} \right) $$\end{document} were used to generate four different GS-GMDH models, and the most accurate model is identified. The best new GS-GMDH model prediction statistics, including RMSE, MARE, and correlation coefficient are 1.816, 0.081, and 0.966, respectively, while the scatter index and BIAS values are 0.084 and 1.45, respectively. A partial derivative sensitivity analysis of the input parameters for the new model is also performed. The new model predictions are then compared with predictions of a number of other models. The superior performance of the new GS-GMDH over these existing models is illustrated.
引用
收藏
页码:1197 / 1214
页数:17
相关论文
共 50 条
  • [41] Estimation of contact heat transfer between curvilinear contacts using inverse method and group method of data handling (GMDH)-type neural networks
    Shayan Fathi
    Mohammad Eftekhari Yazdi
    Armen Adamian
    Heat and Mass Transfer, 2020, 56 : 1961 - 1970
  • [42] Estimation of contact heat transfer between curvilinear contacts using inverse method and group method of data handling (GMDH)-type neural networks
    Fathi, Shayan
    Eftekhari Yazdi, Mohammad
    Adamian, Armen
    HEAT AND MASS TRANSFER, 2020, 56 (06) : 1961 - 1970
  • [43] Prediction of Ice-Induced Subgouge Soil Deformation in Sand Using Group Method of Data Handling-Based Neural Network
    Azimi, Hamed
    Shiri, Hodjat
    Zendehboudi, Sohrab
    JOURNAL OF COLD REGIONS ENGINEERING, 2023, 37 (02)
  • [44] Group Method of Data Handling (GMDH) Neural Network for Estimating Total Organic Carbon (TOC) and Hydrocarbon Potential Distribution (S1, S2) Using Well Logs
    Mulashani, Alvin K.
    Shen, Chuanbo
    Asante-Okyere, Solomon
    Kerttu, Paulus N.
    Abelly, Elieneza N.
    NATURAL RESOURCES RESEARCH, 2021, 30 (05) : 3605 - 3622
  • [45] Group Method of Data Handling (GMDH) Neural Network for Estimating Total Organic Carbon (TOC) and Hydrocarbon Potential Distribution (S1, S2) Using Well Logs
    Alvin K. Mulashani
    Chuanbo Shen
    Solomon Asante-Okyere
    Paulus N. Kerttu
    Elieneza N. Abelly
    Natural Resources Research, 2021, 30 : 3605 - 3622
  • [46] Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery
    Mohammadi, Mohammad-Reza
    Hemmati-Sarapardeh, Abdolhossein
    Schaffie, Mahin
    Husein, Maen M.
    Ranjbar, Mohammad
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 205 (205)
  • [47] Traffic flow modelling of vehicles on a six lane freeway: Comparative analysis of improved group method of data handling and artificial neural network model
    Olayode, Isaac Oyeyemi
    Severino, Alessandro
    Alex, Frimpong Justice
    Jamei, Elmira
    RESULTS IN ENGINEERING, 2025, 25
  • [48] Financial Early Warning System Model Combining Hybrid Semantic Hierarchy with Group Method of Data Handling Neural Network for Detection of Banks' Risks
    Li, Guangju
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [49] Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
    de Araujo Padilha, Carlos Eduardo
    de Oliveira Junior, Sergio Dantas
    de Santana Souza, Domingos Fabiano
    de Oliveira, Jackson Araujo
    de Macedo, Gorete Ribeiro
    dos Santos, Everaldo Silvino
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2017, 25 (05) : 652 - 657
  • [50] Prediction of partition coefficients of alkaloids in ionic liquids based aqueous biphasic systems using hybrid group method of data handling (GMDH) neural network
    Abdolrahimi, Shiva
    Nasernejad, Bahram
    Pazuki, Gholamreza
    JOURNAL OF MOLECULAR LIQUIDS, 2014, 191 : 79 - 84