Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length

被引:0
|
作者
Hamed Azimi
Hossein Bonakdari
Isa Ebtehaj
Bahram Gharabaghi
Fatemeh Khoshbin
机构
[1] Razi University,Environmental Research Center
[2] Razi University,Department of Civil Engineering
[3] University of Guelph,School of Engineering
来源
Acta Mechanica | 2018年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hydraulic jumps generally occur subsequent to structures such as ogee spillways, control gates, and weirs. The jump roller length is considered one of the main hydraulic jump parameters. In this study, the roller length of a hydraulic jump on a rough channel bed is predicted using a novel, evolutionary, generalized structure design of a group method of data handling (GS-GMDH)-type neural network. The topology of GMDH is designed with a genetic algorithm . Initially, the three most important non-dimensional parameters affecting hydraulic jump roller length, including the Froude number upstream of a hydraulic jump Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {Fr} \right) $$\end{document}, the ratio of sequent depths h2/h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{h_2 }/{h_1 }} \right) $$\end{document}, and the relative roughness ks/h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{ks}/{h_1 }} \right) $$\end{document} were used to generate four different GS-GMDH models, and the most accurate model is identified. The best new GS-GMDH model prediction statistics, including RMSE, MARE, and correlation coefficient are 1.816, 0.081, and 0.966, respectively, while the scatter index and BIAS values are 0.084 and 1.45, respectively. A partial derivative sensitivity analysis of the input parameters for the new model is also performed. The new model predictions are then compared with predictions of a number of other models. The superior performance of the new GS-GMDH over these existing models is illustrated.
引用
收藏
页码:1197 / 1214
页数:17
相关论文
共 50 条
  • [21] Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling
    Walton, Rachel
    Binns, Andrew
    Bonakdari, Hossein
    Ebtehaj, Isa
    Gharabaghi, Bahram
    JOURNAL OF HYDROLOGY, 2019, 575 : 671 - 689
  • [22] Formulating a novel combined equation for coal calorific value estimation by group method data handling type neural network
    Akkaya, Ali Volkan
    Cetin, Burhanettin
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 15492 - 15505
  • [24] Scour prediction downstream of an ogee weir using group method of data handling neural network
    Rajkumar V. Raikar
    Rajashri Khanai
    Dattaprasad A. Torse
    Tejas D. Doshi
    Manisha Tapale
    Neural Computing and Applications, 2025, 37 (5) : 3793 - 3807
  • [25] Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data
    Mathew Nkurlu, Baraka
    Shen, Chuanbo
    Asante-Okyere, Solomon
    Mulashani, Alvin K.
    Chungu, Jacqueline
    Wang, Liang
    ENERGIES, 2020, 13 (03)
  • [26] Analysis and forecast of China's carbon emission: evidence from generalized group method of data handling (g-GMDH) neural network
    Bosah, C. P.
    Li, S.
    Mulashani, A. K.
    Ampofo, G. K. M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (02) : 1467 - 1480
  • [27] Analysis and forecast of China's carbon emission: evidence from generalized group method of data handling (g-GMDH) neural network
    C. P. Bosah
    S. Li
    A. K. Mulashani
    G. K. M. Ampofo
    International Journal of Environmental Science and Technology, 2024, 21 : 1467 - 1480
  • [28] Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP
    Ravisankar, P.
    Ravi, V.
    KNOWLEDGE-BASED SYSTEMS, 2010, 23 (08) : 823 - 831
  • [29] Intelligent step-length adjustment for adaptive path-following in nonlinear structural mechanics based on group method of data handling neural network
    Maghami, Ali
    Hosseini, Seyed Mahmoud
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (20) : 2895 - 2912
  • [30] Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV
    Madandoust, R.
    Ghavidel, R.
    Nariman-zadeh, N.
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (03) : 556 - 567