Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length

被引:0
|
作者
Hamed Azimi
Hossein Bonakdari
Isa Ebtehaj
Bahram Gharabaghi
Fatemeh Khoshbin
机构
[1] Razi University,Environmental Research Center
[2] Razi University,Department of Civil Engineering
[3] University of Guelph,School of Engineering
来源
Acta Mechanica | 2018年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hydraulic jumps generally occur subsequent to structures such as ogee spillways, control gates, and weirs. The jump roller length is considered one of the main hydraulic jump parameters. In this study, the roller length of a hydraulic jump on a rough channel bed is predicted using a novel, evolutionary, generalized structure design of a group method of data handling (GS-GMDH)-type neural network. The topology of GMDH is designed with a genetic algorithm . Initially, the three most important non-dimensional parameters affecting hydraulic jump roller length, including the Froude number upstream of a hydraulic jump Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {Fr} \right) $$\end{document}, the ratio of sequent depths h2/h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{h_2 }/{h_1 }} \right) $$\end{document}, and the relative roughness ks/h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{ks}/{h_1 }} \right) $$\end{document} were used to generate four different GS-GMDH models, and the most accurate model is identified. The best new GS-GMDH model prediction statistics, including RMSE, MARE, and correlation coefficient are 1.816, 0.081, and 0.966, respectively, while the scatter index and BIAS values are 0.084 and 1.45, respectively. A partial derivative sensitivity analysis of the input parameters for the new model is also performed. The new model predictions are then compared with predictions of a number of other models. The superior performance of the new GS-GMDH over these existing models is illustrated.
引用
收藏
页码:1197 / 1214
页数:17
相关论文
共 50 条
  • [1] Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length
    Azimi, Hamed
    Bonakdari, Hossein
    Ebtehaj, Isa
    Gharabaghi, Bahram
    Khoshbin, Fatemeh
    ACTA MECHANICA, 2018, 229 (03) : 1197 - 1214
  • [2] Predicting methionine and lysine contents in soybean meal and fish meal using a group method of data handling-type neural network
    Mottaghitalab, Majid
    Nikkhah, Mohsen
    Darmani-Kuhi, Hassan
    Lopez, Secundino
    France, James
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2015, 13 (01)
  • [3] Group method of data handling-type neural network prediction of broiler performance based on dietary metabolizable energy, methionine, and lysine
    Ahmadi, H.
    Mottaghitalab, M.
    Nariman-Zadeh, N.
    JOURNAL OF APPLIED POULTRY RESEARCH, 2007, 16 (04): : 494 - 501
  • [4] Predicting beach profile evolution with group method data handling-type neural networks on beaches with seawalls
    Lashteh Neshaei M.A.
    Mehrdad M.A.
    Abedimahzoon N.
    Asadollahi N.
    Frontiers of Structural and Civil Engineering, 2013, 7 (2) : 117 - 126
  • [5] Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks
    Mottaghitalab, M.
    Faridi, A.
    Darmani-Kuhi, H.
    France, J.
    Ahmadi, H.
    POULTRY SCIENCE, 2010, 89 (06) : 1325 - 1331
  • [6] Performance Evaluation of Adaptive Neuro-Fuzzy Inference System and Group Method of Data Handling-Type Neural Network for Estimating Wear Rate of Diamond Wire Saw
    Mikaeil R.
    Haghshenas S.S.
    Ozcelik Y.
    Gharehgheshlagh H.H.
    Geotechnical and Geological Engineering, 2018, 36 (6) : 3779 - 3791
  • [7] Predicting carcass energy content and composition in broilers using the group method of data handling-type neural networks
    Faridi, A.
    Mottaghitalab, M.
    Darmani-Kuhi, H.
    France, J.
    Ahmadi, H.
    JOURNAL OF AGRICULTURAL SCIENCE, 2011, 149 : 249 - 254
  • [8] Prediction model for true metabolizable energy of feather meal and poultry offal meal using group method of data handling-type neural network
    Ahmadi, H.
    Golian, A.
    Mottaghitalab, M.
    Nariman-Zadeh, N.
    POULTRY SCIENCE, 2008, 87 (09) : 1909 - 1912
  • [9] Predicting performance of broiler chickens from dietary nutrients using group method of data handling-type neural networks
    Ahmadi, H.
    Mottaghitalab, M.
    Nariman-Zadeh, N.
    Golian, A.
    BRITISH POULTRY SCIENCE, 2008, 49 (03) : 315 - 320
  • [10] Multi-objective optimal design of online PID controllers using model predictive control based on the group method of data handling-type neural networks
    Majdabadi-Farahani, V.
    Hanif, M.
    Gholaminezhad, I.
    Jamali, A.
    Nariman-Zadeh, N.
    CONNECTION SCIENCE, 2014, 26 (04) : 349 - 365