Fourier multipliers for Sobolev spaces on the Heisenberg groupМультипликаторы Фурье для пространств Соболева на группе Гейэенберга

被引:0
|
作者
S. Jitendriya
R. Radha
D. Venku Naidu
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Sobolev Space; Heisenberg Group; Fourier Multiplier; Approximate Identity; Hermite Function;
D O I
10.1007/s10476-010-0103-7
中图分类号
学科分类号
摘要
In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space Wk,p(Hn) coincides with the class of right Fourier multipliers for Lp(Hn) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jℒ−1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jRjℒ−1 are bounded on Lp(Hn), 1 < p < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_j = \frac{\partial } {{\partial z_j }} - \frac{i} {4}\bar z_j \frac{\partial } {{\partial t}}, \bar R_j = \frac{\partial } {{\partial \bar z_j }} + \frac{i} {4}z_j \frac{\partial } {{\partial t}} $$\end{document} and ℒ is the sublaplacian on Hn. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space Wk,1(Hn) coincides with the dual space of the projective tensor product of two function spaces.
引用
收藏
页码:51 / 70
页数:19
相关论文
共 50 条