Fourier multipliers for Sobolev spaces on the Heisenberg groupМультипликаторы Фурье для пространств Соболева на группе Гейэенберга

被引:0
|
作者
S. Jitendriya
R. Radha
D. Venku Naidu
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Sobolev Space; Heisenberg Group; Fourier Multiplier; Approximate Identity; Hermite Function;
D O I
10.1007/s10476-010-0103-7
中图分类号
学科分类号
摘要
In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space Wk,p(Hn) coincides with the class of right Fourier multipliers for Lp(Hn) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jℒ−1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jRjℒ−1 are bounded on Lp(Hn), 1 < p < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_j = \frac{\partial } {{\partial z_j }} - \frac{i} {4}\bar z_j \frac{\partial } {{\partial t}}, \bar R_j = \frac{\partial } {{\partial \bar z_j }} + \frac{i} {4}z_j \frac{\partial } {{\partial t}} $$\end{document} and ℒ is the sublaplacian on Hn. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space Wk,1(Hn) coincides with the dual space of the projective tensor product of two function spaces.
引用
收藏
页码:51 / 70
页数:19
相关论文
共 50 条
  • [21] A Hardy type inequality on fractional order Sobolev spaces on the Heisenberg group
    Adimurthi
    Mallick, Arka
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (03) : 917 - 949
  • [22] On the images of Sobolev spaces under the heat kernel transform on the Heisenberg group
    Radha, R.
    Thangavelu, S.
    Naidu, D. Venku
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (13) : 1337 - 1352
  • [23] Hardy-Sobolev spaces and their multipliers
    GuangFu Cao
    Li He
    Science China Mathematics, 2014, 57 : 2361 - 2368
  • [24] Multipliers in Hardy-Sobolev Spaces
    Joaquín M. Ortega
    Joan Fàbrega
    Integral Equations and Operator Theory, 2006, 55 : 535 - 560
  • [25] Multipliers in weighted Sobolev spaces on the axis
    Myrzagaliyeva, A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03): : 105 - 115
  • [26] Weyl multipliers for invariant Sobolev spaces
    Radha, R
    Thangavelu, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (01): : 31 - 40
  • [27] On multipliers for Hardy-Sobolev spaces
    Beatrous, Frank
    Burbea, Jacob
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2125 - 2133
  • [28] Hardy-Sobolev spaces and their multipliers
    Cao GuangFu
    He Li
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2361 - 2368
  • [29] Multipliers in Hardy-Sobolev spaces
    Ortega, Joaquin M.
    Fabrega, Joan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (04) : 535 - 560
  • [30] LP MULTIPLIERS ON THE HEISENBERG GROUP
    MICHELE, LD
    MAUCERI, G
    MICHIGAN MATHEMATICAL JOURNAL, 1979, 26 (03) : 361 - 371