In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space Wk,p(Hn) coincides with the class of right Fourier multipliers for Lp(Hn) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators Rj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\bar R
$$\end{document}jℒ−1 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\bar R
$$\end{document}jRjℒ−1 are bounded on Lp(Hn), 1 < p < ∞, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
R_j = \frac{\partial }
{{\partial z_j }} - \frac{i}
{4}\bar z_j \frac{\partial }
{{\partial t}}, \bar R_j = \frac{\partial }
{{\partial \bar z_j }} + \frac{i}
{4}z_j \frac{\partial }
{{\partial t}}
$$\end{document}
and ℒ is the sublaplacian on Hn. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space Wk,1(Hn) coincides with the dual space of the projective tensor product of two function spaces.