Fourier multipliers for Sobolev spaces on the Heisenberg groupМультипликаторы Фурье для пространств Соболева на группе Гейэенберга

被引:0
|
作者
S. Jitendriya
R. Radha
D. Venku Naidu
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Sobolev Space; Heisenberg Group; Fourier Multiplier; Approximate Identity; Hermite Function;
D O I
10.1007/s10476-010-0103-7
中图分类号
学科分类号
摘要
In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space Wk,p(Hn) coincides with the class of right Fourier multipliers for Lp(Hn) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jℒ−1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jRjℒ−1 are bounded on Lp(Hn), 1 < p < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_j = \frac{\partial } {{\partial z_j }} - \frac{i} {4}\bar z_j \frac{\partial } {{\partial t}}, \bar R_j = \frac{\partial } {{\partial \bar z_j }} + \frac{i} {4}z_j \frac{\partial } {{\partial t}} $$\end{document} and ℒ is the sublaplacian on Hn. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space Wk,1(Hn) coincides with the dual space of the projective tensor product of two function spaces.
引用
收藏
页码:51 / 70
页数:19
相关论文
共 50 条
  • [1] Fourier multipliers for Sobolev spaces on the Heisenberg group
    Jitendriya, S.
    Radha, R.
    Naidu, D. Venku
    ANALYSIS MATHEMATICA, 2010, 36 (01) : 51 - 70
  • [2] Homogeneous Fourier and Weyl multipliers on Sobolev spaces related to the Heisenberg group
    Basak, Riju
    Garg, Rahul
    Thangavelu, Sundaram
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (08)
  • [3] A note on Fourier multipliers and Sobolev spaces
    Olevskii, V
    FUNCTIONS, SERIES, OPERATORS: ALEXITS MEMORIAL CONFERENCE, 2002, : 321 - 325
  • [4] Fourier multipliers on the Heisenberg group revisited
    Bagchi, Sayan
    STUDIA MATHEMATICA, 2021, 260 (03) : 241 - 272
  • [5] Extension of Sobolev spaces on the Heisenberg group
    Nhieu, DM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (12): : 1559 - 1564
  • [6] Weighted norm inequalities for Weyl multipliers and fourier multipliers on the Heisenberg group
    Sayan Bagchi
    Sundaram Thangavelu
    Journal d'Analyse Mathématique, 2018, 136 : 1 - 29
  • [7] Weighted norm inequalities for Weyl multipliers and fourier multipliers on the Heisenberg group
    Bagchi, Sayan
    Thangavelu, Sundaram
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 136 (01): : 1 - 29
  • [8] New characterizations of Sobolev spaces on the Heisenberg group
    Cui, Xiaoyue
    Lam, Nguyen
    Lu, Guozhen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (08) : 2962 - 2994
  • [9] FLAG HARDY SPACES AND MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP
    Han, Yongsheng
    Lu, Guozhen
    Sawyer, Eric
    ANALYSIS & PDE, 2014, 7 (07): : 1465 - 1534
  • [10] MULTIPLIERS OF SOBOLEV SPACES
    POORNIMA, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 45 (01) : 1 - 28