First passage sets of the 2D continuum Gaussian free field

被引:0
|
作者
Juhan Aru
Titus Lupu
Avelio Sepúlveda
机构
[1] EPFL,Institute of Mathematics
[2] Sorbonne Université,CNRS and LPSM, UMR 8001
[3] Univ Lyon,Institut Camille Jordan, Université Claude Bernard Lyon 1, CNRS UMR 5208
来源
关键词
First passage sets; Gaussian free field; Gaussian multiplicative chaos; Local set; Schramm–Loewner evolution; Two-valued local sets; 60G15; 60G60; 60J65; 60J67; 81T40;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the first passage set (FPS) of constant level -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path on which the GFF does not go below -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document}. It is, thus, the two-dimensional analogue of the first hitting time of -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} by a one-dimensional Brownian motion. We provide an axiomatic characterization of the FPS, a continuum construction using level lines, and study its properties: it is a fractal set of zero Lebesgue measure and Minkowski dimension 2 that is coupled with the GFF Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} as a local set A so that Φ+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi +a$$\end{document} restricted to A is a positive measure. One of the highlights of this paper is identifying this measure as a Minkowski content measure in the non-integer gauge r↦|log(r)|1/2r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \mapsto \vert \log (r)\vert ^{1/2}r^{2}$$\end{document}, by using Gaussian multiplicative chaos theory.
引用
收藏
页码:1303 / 1355
页数:52
相关论文
共 50 条
  • [41] On intermediate level sets of two-dimensional discrete Gaussian free field
    Biskup, Marek
    Louidor, Oren
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 1948 - 1987
  • [42] Non-Gaussian statistics of critical sets in 2D and 3D: Peaks, voids, saddles, genus, and skeleton
    Gay, Christophe
    Pichon, Christophe
    Pogosyan, Dmitry
    PHYSICAL REVIEW D, 2012, 85 (02):
  • [43] Discrete embedded modes in the continuum in 2D lattices
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (27)
  • [44] Continuum nonsimple loops and 2D critical percolation
    Camia, F
    Newman, CM
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 157 - 173
  • [45] Continuum Nonsimple Loops and 2D Critical Percolation
    Federico Camia
    Charles M. Newman
    Journal of Statistical Physics, 2004, 116 : 157 - 173
  • [46] Discrete embedded modes in the continuum in 2D lattices
    Molina, Mario I.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 384 (27):
  • [47] Magnetic field crossover between 2D and 3D regimes of gaussian fluctuations in layered superconductors
    Buzdin, A
    Dorin, V
    FLUCTUATION PHENOMENA IN HIGH TEMPERATURE SUPERCONDUCTORS, 1997, 32 : 335 - 341
  • [48] A 2D Gaussian beam launcher applied in parallel plate waveguide field mapping systems
    Xu, Ke
    Zhu, Bo O.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (07) : 1848 - 1854
  • [49] 2D temperature field reconstruction using optimized Gaussian radial basis function networks
    Cao, Lidan
    Abedin, Sabrina
    BiondiVaccariello, Andres M.
    Wu, Rui
    Cui, Guoqiang
    Cao, Chengyu
    Wang, Xingwei
    MEASUREMENT, 2024, 237
  • [50] CONTINUUM PERCOLATION OF 2D AND 3D SIMPLE FLUIDS
    Heyes, D. M.
    Melrose, J. R.
    MOLECULAR SIMULATION, 1990, 5 (05) : 329 - 343