First passage sets of the 2D continuum Gaussian free field

被引:0
|
作者
Juhan Aru
Titus Lupu
Avelio Sepúlveda
机构
[1] EPFL,Institute of Mathematics
[2] Sorbonne Université,CNRS and LPSM, UMR 8001
[3] Univ Lyon,Institut Camille Jordan, Université Claude Bernard Lyon 1, CNRS UMR 5208
来源
关键词
First passage sets; Gaussian free field; Gaussian multiplicative chaos; Local set; Schramm–Loewner evolution; Two-valued local sets; 60G15; 60G60; 60J65; 60J67; 81T40;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the first passage set (FPS) of constant level -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path on which the GFF does not go below -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document}. It is, thus, the two-dimensional analogue of the first hitting time of -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} by a one-dimensional Brownian motion. We provide an axiomatic characterization of the FPS, a continuum construction using level lines, and study its properties: it is a fractal set of zero Lebesgue measure and Minkowski dimension 2 that is coupled with the GFF Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} as a local set A so that Φ+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi +a$$\end{document} restricted to A is a positive measure. One of the highlights of this paper is identifying this measure as a Minkowski content measure in the non-integer gauge r↦|log(r)|1/2r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \mapsto \vert \log (r)\vert ^{1/2}r^{2}$$\end{document}, by using Gaussian multiplicative chaos theory.
引用
收藏
页码:1303 / 1355
页数:52
相关论文
共 50 条
  • [31] From 3d dualities to 2d free field correlators and back
    Sara Pasquetti
    Matteo Sacchi
    Journal of High Energy Physics, 2019
  • [32] From 3d dualities to 2d free field correlators and back
    Pasquetti, Sara
    Sacchi, Matteo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [33] Concentration sets for 2D incompressible flow
    LopesFilho, MC
    Lopes, HJN
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 101 - 104
  • [34] High-dimensional asymptotics for percolation of Gaussian free field level sets
    Drewitz, Alexander
    Rodriguez, Pierre-Francois
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 39
  • [35] Hole probability for nodal sets of the cut-off Gaussian Free Field
    Rivera, Alejandro
    ADVANCES IN MATHEMATICS, 2017, 319 : 1 - 39
  • [36] ON A FORMULA FOR SETS OF CONSTANT WIDTH IN 2D
    Kawohl, Bernd
    Sweers, Guido
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) : 2117 - 2131
  • [37] LIOUVILLE MEASURE AS A MULTIPLICATIVE CASCADE VIA LEVEL SETS OF THE GAUSSIAN FREE FIELD
    Aru, Juhan
    Powell, Ellen
    Sepulveda, Avelio
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (01) : 205 - 245
  • [38] Entropic repulsion for the Gaussian free field conditioned on disconnection by level-sets
    Alberto Chiarini
    Maximilian Nitzschner
    Probability Theory and Related Fields, 2020, 177 : 525 - 575
  • [39] On extending symmetry sets for 2D shapes
    Kuijper, A
    Olsen, OF
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 512 - 520
  • [40] Entropic repulsion for the Gaussian free field conditioned on disconnection by level-sets
    Chiarini, Alberto
    Nitzschner, Maximilian
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 525 - 575