First passage sets of the 2D continuum Gaussian free field

被引:0
|
作者
Juhan Aru
Titus Lupu
Avelio Sepúlveda
机构
[1] EPFL,Institute of Mathematics
[2] Sorbonne Université,CNRS and LPSM, UMR 8001
[3] Univ Lyon,Institut Camille Jordan, Université Claude Bernard Lyon 1, CNRS UMR 5208
来源
关键词
First passage sets; Gaussian free field; Gaussian multiplicative chaos; Local set; Schramm–Loewner evolution; Two-valued local sets; 60G15; 60G60; 60J65; 60J67; 81T40;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the first passage set (FPS) of constant level -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path on which the GFF does not go below -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document}. It is, thus, the two-dimensional analogue of the first hitting time of -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} by a one-dimensional Brownian motion. We provide an axiomatic characterization of the FPS, a continuum construction using level lines, and study its properties: it is a fractal set of zero Lebesgue measure and Minkowski dimension 2 that is coupled with the GFF Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} as a local set A so that Φ+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi +a$$\end{document} restricted to A is a positive measure. One of the highlights of this paper is identifying this measure as a Minkowski content measure in the non-integer gauge r↦|log(r)|1/2r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \mapsto \vert \log (r)\vert ^{1/2}r^{2}$$\end{document}, by using Gaussian multiplicative chaos theory.
引用
收藏
页码:1303 / 1355
页数:52
相关论文
共 50 条
  • [1] First passage sets of the 2D continuum Gaussian free field
    Aru, Juhan
    Lupu, Titus
    Sepulveda, Avelio
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) : 1303 - 1355
  • [2] The First Passage Sets of the 2D Gaussian Free Field: Convergence and Isomorphisms
    Aru, Juhan
    Lupu, Titus
    Sepulveda, Avelio
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (03) : 1885 - 1929
  • [3] The First Passage Sets of the 2D Gaussian Free Field: Convergence and Isomorphisms
    Juhan Aru
    Titus Lupu
    Avelio Sepúlveda
    Communications in Mathematical Physics, 2020, 375 : 1885 - 1929
  • [4] Two-valued local sets of the 2D continuum Gaussian free field: connectivity, labels, and induced metrics
    Aru, Juhan
    Sepulveda, Avelio
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [5] Gaussian Multiplicative Chaos Through the Lens of the 2D Gaussian Free Field
    Aru, Juhan
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (01) : 17 - 56
  • [6] ASYMPTOTICS FOR 2D CRITICAL FIRST PASSAGE PERCOLATION
    Damron, Michael
    Lam, Wai-Kit
    Wang, Xuan
    ANNALS OF PROBABILITY, 2017, 45 (05): : 2941 - 2970
  • [7] A contour line of the continuum Gaussian free field
    Oded Schramm
    Scott Sheffield
    Probability Theory and Related Fields, 2013, 157 : 47 - 80
  • [8] Two-temperatures overlap distribution for the 2D discrete Gaussian free field
    Pain, Michel
    Zindy, Olivier
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 685 - 699
  • [9] A contour line of the continuum Gaussian free field
    Schramm, Oded
    Sheffield, Scott
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) : 47 - 80
  • [10] On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field
    Ostrovsky, Dmitry
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (06) : 1292 - 1317