Mechanical properties of PLA-graphene filament for FDM 3D printing

被引:0
|
作者
José C. Camargo
Álisson R. Machado
Erica C. Almeida
Erickson Fabiano Moura Sousa Silva
机构
[1] State University of Santa Cruz,Laboratory for Manufacturing and Project, School of Mechanical Engineering
[2] Federal University of Uberlândia,Laboratory of Education and Research in Machining, School of Mechanical Engineering
[3] Pontifícia Universidade Católica do Paraná – PUC-PR,Mechanical Engineering Graduate Program
关键词
Fused deposition modelling; 3D printing; PLA-graphene; Mechanical properties;
D O I
暂无
中图分类号
学科分类号
摘要
Fused deposition modelling is an additive manufacturing technology that is widely employed to produce good quality products with complex geometries at a low cost and with efficient manufacturing and delivery logistics. The mechanical properties can be enhanced by studying the numerous FDM parameters and by using new materials. In this work, was studied the mechanical properties tensile strength, flexural strength, and impact energy of 3D printed parts manufactured with FDM technology and PLA-graphene raw material by varying the infill and layer thickness parameters using a statistical technique CCD—central composite design. Due to the layered production process, 3D printed parts exhibit anisotropic behaviour. In the tests, the flat orientation and honeycomb infill pattern were maintained. The results showed that the mechanical properties improve as the linear layer thickness parameter increases. The behaviour was different in each test for the linear infill parameter. The mechanical properties, tensile strength and flexural strength, increased as the infill increased, while impact energy decreased as infill increased. The relationship between mechanical properties and printing time/weight was also evaluated.
引用
下载
收藏
页码:2423 / 2443
页数:20
相关论文
共 50 条
  • [21] Characterization of PLA/TPU composite filaments manufactured for 3D printing with FDM
    Jayswal, Ajay
    Adanur, Sabit
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2023, 36 (04) : 1450 - 1471
  • [22] FDM-based 3D printing of PLA/PHA composite polymers
    Cecen, Berivan
    CHEMICAL PAPERS, 2023, 77 (08) : 4379 - 4386
  • [23] A review on PLA with different fillers used as a filament in 3D printing
    Arockiam, A. Joseph
    Subramanian, Karthikeyan
    Padmanabhan, R. G.
    Selvaraj, Rajeshkumar
    Bagal, Dilip Kumar
    Rajesh, S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 50 : 2057 - 2064
  • [24] MECHANICAL PROPERTIES OF BIODEGRADABLE PLA PLASTIC PARTS PRODUCED BY 3D PRINTING
    Beniak, Juraj
    Krizan, Peter
    Matus, Milos
    MM SCIENCE JOURNAL, 2019, 2019 : 2746 - 2750
  • [25] Filament Supply Sensing and Control for FFF/FDM 3D Printing Technology
    Mateev, Valentin
    Ralchev, Martin
    Marinova, Iliana
    Lecture Notes in Electrical Engineering, 2022, 886 : 301 - 313
  • [26] Effect of Printing Parameters of 3D Printed PLA Parts on Mechanical Properties
    Jayakumar, N.
    Senthilkumar, G.
    Pradeep, A. D.
    JOURNAL OF ENGINEERING RESEARCH, 2021, 9
  • [27] Preparation and Mechanical Properties of Fiber Reinforced PLA for 3D Printing Materials
    Li, Xionghao
    Ni, Zhongjin
    Bai, Shuyang
    Lou, Baiyang
    2017 INTERNATIONAL SYMPOSIUM ON APPLICATION OF MATERIALS SCIENCE AND ENERGY MATERIALS (SAMSE 2017), 2018, 322
  • [28] Synthesis and fabrication of biobased thermoplastic polyurethane filament for FDM 3D printing
    Shin, Eun Joo
    Jung, Yang Sook
    Choi, Hyeong Yeol
    Lee, Sunhee
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (40)
  • [29] Mechanical properties of commercial PLA filament as 3D printed parts utilizing fused filament fabrication
    Zakaria, H.
    Khan, S. F.
    Sabtu, S. N.
    Ibrahim, M.
    6TH INTERNATIONAL CONFERENCE ON APPLICATIONS AND DESIGN IN MECHANICAL ENGINEERING, 2019, 670
  • [30] Thermal Control of Filament Supply in FFF/FDM 3D Printing Technology
    Ralchev, Martin
    Mateev, Valentin
    Marinova, Iliana
    2021 XXXI INTERNATIONAL SCIENTIFIC SYMPOSIUM METROLOGY AND METROLOGY ASSURANCE (MMA 2021), 2021, : 81 - 84