An overlapping additive Schwarz preconditioner for the Laplace-Beltrami equation using spherical splines

被引:0
|
作者
Duong Pham
Thanh Tran
Simon Crothers
机构
[1] The University of New South Wales,School of Mathematics and Statistics
来源
关键词
Laplace–Beltrami equation; Sphere; Spherical spline; Additive Schwarz; Domain decomposition; Preconditioner; Overlapping method; 65N55; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We present an overlapping domain decomposition technique for solving the Laplace–Beltrami equation on the sphere with spherical splines. We prove that the condition number of the additive Schwarz operator is bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(H^2/h^2\right)$\end{document}, where H and h are the sizes of the coarse and fine meshes, respectively. In the case that the degree of the splines is even, a better bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(\max_{1\leq k \leq J}\left(1+H_k/\delta_k\right)\right)$\end{document} is proved. Here J is the number of subdomains, Hk is the size of the kth subdomain, and δk is the size of the overlap of the kth subdomain. The method is illustrated by numerical experiments on large point sets taken from magsat satellite data.
引用
收藏
页码:93 / 121
页数:28
相关论文
共 49 条
  • [32] Analysis of the Finite Element Method for the Laplace-Beltrami Equation on Surfaces with Regions of High Curvature Using Graded Meshes
    Guzman, Johnny
    Madureira, Alexandre
    Sarkis, Marcus
    Walker, Shawn
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1736 - 1761
  • [33] Pseudo-Spectral Methods for the Laplace-Beltrami Equation and the Hodge Decomposition on Surfaces of Genus One
    Imbert-Gerard, Lise-Marie
    Greengard, Leslie
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 941 - 955
  • [34] ENTROPIC HASHING OF 3D OBJECTS USING LAPLACE-BELTRAMI OPERATOR
    Ghaderpanah, Mohammadreza
    Abbas, Abdullah
    Ben Hamza, A.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 3104 - 3107
  • [35] Unstructured surface mesh adaptation using the Laplace-Beltrami target metric approach
    Hansen, Glen
    Zardecki, Andrew
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) : 165 - 182
  • [36] ROTATION INVARIANT PATTERNS FOR A NONLINEAR LAPLACE-BELTRAMI EQUATION: A TAYLOR-CHEBYSHEV SERIES APPROACH
    van den Berg, Jan Bouwe
    Duchesne, Gabriel William
    Lessard, Jean-Philippe
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2022, 9 (02): : 253 - 278
  • [37] Assessment of an isogeometric approach with Catmull-Clark subdivision surfaces using the Laplace-Beltrami problems
    Liu, Zhaowei
    McBride, Andrew
    Saxena, Prashant
    Steinmann, Paul
    COMPUTATIONAL MECHANICS, 2020, 66 (04) : 851 - 876
  • [38] LAPLACE-BELTRAMI SPECTRA FOR SHAPE COMPARISON OF SURFACES IN 3D USING THE CLOSEST POINT METHOD
    Arteaga, Reynaldo J.
    Ruuth, Steven J.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4511 - 4515
  • [39] FAST SURFACE-BASED MEASUREMENTS USING FIRST EIGENFUNCTION OF THE LAPLACE-BELTRAMI OPERATOR: INTEREST FOR SULCAL DESCRIPTION
    Lefevre, Julien
    Germanaud, David
    Fischer, Clara
    Toro, Roberto
    Riviere, Denis
    Coulon, Olivier
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1527 - 1530
  • [40] GROUP-WISE ANALYSIS ON MYELINATION PROFILES OF CEREBRAL CORTEX USING THE SECOND EIGENVECTOR OF LAPLACE-BELTRAMI OPERATOR
    Kim, Seung-Goo
    Stelzer, Johannes
    Bazin, Pierre-Louis
    Viehweger, Adrian
    Knoesche, Thomas
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 1007 - 1010