An overlapping additive Schwarz preconditioner for the Laplace-Beltrami equation using spherical splines

被引:0
|
作者
Duong Pham
Thanh Tran
Simon Crothers
机构
[1] The University of New South Wales,School of Mathematics and Statistics
来源
关键词
Laplace–Beltrami equation; Sphere; Spherical spline; Additive Schwarz; Domain decomposition; Preconditioner; Overlapping method; 65N55; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We present an overlapping domain decomposition technique for solving the Laplace–Beltrami equation on the sphere with spherical splines. We prove that the condition number of the additive Schwarz operator is bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(H^2/h^2\right)$\end{document}, where H and h are the sizes of the coarse and fine meshes, respectively. In the case that the degree of the splines is even, a better bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(\max_{1\leq k \leq J}\left(1+H_k/\delta_k\right)\right)$\end{document} is proved. Here J is the number of subdomains, Hk is the size of the kth subdomain, and δk is the size of the overlap of the kth subdomain. The method is illustrated by numerical experiments on large point sets taken from magsat satellite data.
引用
收藏
页码:93 / 121
页数:28
相关论文
共 49 条
  • [21] Dirichlet problem for Laplace-Beltrami equation on hypersurfaces-FEM approximation
    Buchukuri, Tengiz
    Duduchava, Roland
    Tephnadze, George
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (03) : 300 - 307
  • [22] Convergence of the point integral method for Laplace-Beltrami equation on point cloud
    Shi, Zuoqiang
    Sun, Jian
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [23] EIGENVALUES OF THE LAPLACE-BELTRAMI OPERATOR ON A LARGE SPHERICAL CAP UNDER THE ROBIN PROBLEM
    Kabeya, Yoshitsugu
    Kawakami, Tatsuki
    Kosaka, Atsushi
    Ninomiya, Hirokazu
    KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) : 620 - 645
  • [24] R-separation of variables for the conformally invariant Laplace-Beltrami equation
    Chanachowicz, Mark
    Chanu, Claudia M.
    McLenaghan, Raymond G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (07) : 876 - 884
  • [25] Characterization of eigenfunctions of the Laplace-Beltrami operator using Fourier multipliers
    Naik, Muna
    Sarkar, Rudra P.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (11)
  • [26] Global medical shape analysis using the Laplace-Beltrami spectrum
    Niethammer, Marc
    Reuter, Martin
    Wolter, Franz-Erich
    Bouix, Sylvain
    Peinecke, Niklas
    Koo, Min-Seong
    Shenton, Martha E.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 850 - +
  • [27] Periocular authentication based on FEM using Laplace-Beltrami eigenvalues
    Ambika, D. R.
    Radhika, K. R.
    Seshachalam, D.
    PATTERN RECOGNITION, 2016, 50 : 178 - 194
  • [28] The method of separation of variables for Laplace-Beltrami equation in semi-Riemannian geometry
    Kupeli, DN
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 279 - 290
  • [29] Geometric Understanding of Point Clouds Using Laplace-Beltrami Operator
    Liang, Jian
    Lai, Rongjie
    Wong, Tsz Wai
    Zhao, Hongkai
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 214 - 221
  • [30] Mandible shape modeling using the second eigenfunction of the Laplace-Beltrami operator
    Seo, Seongho
    Chung, Moo K.
    Whyms, Brian J.
    Vorperian, Houri K.
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962