Current Fluctuations for Independent Random Walks in Multiple Dimensions

被引:0
|
作者
Rohini Kumar
机构
[1] UCSB,Statistics and Applied Probability
来源
关键词
Independent random walks; Hydrodynamic limit; Current fluctuations; Distribution-valued process; Generalized Ornstein–Uhlenbeck process; 60K35; 60F10; 60F17; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a system of particles evolving as independent and identically distributed (i.i.d.) random walks. Initial fluctuations in the particle density get translated over time with velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{v}$\end{document}, the common mean velocity of the random walks. Consider a box centered around an observer who starts at the origin and moves with constant velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{v}$\end{document}. To observe interesting fluctuations beyond the translation of initial density fluctuations, we measure the net flux of particles over time into this moving box. We call this the “box-current” process.
引用
收藏
页码:1170 / 1195
页数:25
相关论文
共 50 条
  • [21] MEETING TIME OF INDEPENDENT RANDOM WALKS IN RANDOM ENVIRONMENT
    Gallesco, Christophe
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 257 - 292
  • [22] Current Trends in Random Walks on Random Lattices
    Dshalalow, Jewgeni H.
    White, Ryan T.
    MATHEMATICS, 2021, 9 (10)
  • [23] Late points for random walks in two dimensions
    Dembo, A
    Peres, Y
    Rosen, J
    Zeitouni, O
    ANNALS OF PROBABILITY, 2006, 34 (01): : 219 - 263
  • [24] The dimensions of the range of random walks in time-random environments
    Zhang Xiaomin
    Hu Dihe
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) : 615 - 628
  • [25] Exact shapes of random walks in two dimensions
    Wei, GY
    PHYSICA A, 1995, 222 (1-4): : 152 - 154
  • [26] Recurrence for persistent random walks in two dimensions
    Lenci, Marco
    STOCHASTICS AND DYNAMICS, 2007, 7 (01) : 53 - 74
  • [27] Active random walks in one and two dimensions
    Jose, Stephy
    Mandal, Dipanjan
    Barma, Mustansir
    Ramola, Kabir
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [28] Critical dimensions for random walks on random-walk chains
    Rabinovich, S
    Roman, HE
    Havlin, S
    Bunde, A
    PHYSICAL REVIEW E, 1996, 54 (04): : 3606 - 3608
  • [29] Frequent points for random walks in two dimensions
    Bass, Richard F.
    Rosen, Jay
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12
  • [30] Random walks on Sierpinski gaskets of different dimensions
    Weber, Sebastian
    Klafter, Joseph
    Blumen, Alexander
    PHYSICAL REVIEW E, 2010, 82 (05):