Singularities of the green function of the nonstationary Schrödinger equation

被引:0
|
作者
M. V. Buslaeva
V. S. Buslaev
机构
关键词
Green Function; Discrete Spectrum; Essential Spectrum; Linear Manifold; Classical Motion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:132 / 134
页数:2
相关论文
共 50 条
  • [31] Bose–Einstein condensate wave function and nonlinear Schrödinger equation
    V. B. Bobrov
    S. A. Trigger
    Bulletin of the Lebedev Physics Institute, 2016, 43 : 266 - 269
  • [32] Pseudorandomness of the Schrödinger Map Equation
    Kumar, Sandeep
    ACTA APPLICANDAE MATHEMATICAE, 2024, 193 (01)
  • [33] Propagation of Gabor singularities for semilinear Schrödinger equations
    Fabio Nicola
    Luigi Rodino
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1715 - 1732
  • [34] Green Functions of the Stationary Schrödinger Equation and Tomographic Representation of Quantum Mechanics
    V. I. Man'ko
    V. A. Sharapov
    Journal of Russian Laser Research, 2004, 25 : 370 - 382
  • [35] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [36] Lorentz transformations for the schrödinger equation
    Shtelen V.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 480 - 481
  • [37] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [38] On the Linear Forms of the Schrödinger Equation
    Y. Kasri
    A. Bérard
    Y. Grandati
    L. Chetouani
    International Journal of Theoretical Physics, 2012, 51 : 1370 - 1378
  • [39] A canonical dilation of the Schrödinger equation
    M. F. Brown
    Russian Journal of Mathematical Physics, 2014, 21 : 316 - 325
  • [40] Thermodynamic Gravity and the Schrödinger Equation
    Merab Gogberashvili
    International Journal of Theoretical Physics, 2011, 50 : 2391 - 2402