Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

被引:0
|
作者
O. Prakash
Li Feng
G. Michalek
Weiqun Gan
Lei Lu
A. Shanmugaraju
S. Umapathy
机构
[1] Chinese Academy of Sciences,Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory
[2] Astronomical Observatory of Jagiellonian University,Department of Physics
[3] University of Chinese Academy of Sciences,School of Physics
[4] Arul Anandar College,undefined
[5] Madurai Kamaraj University,undefined
来源
关键词
Coronal mass ejections; Solar flares; Type II radio bursts; Solar energetic particle events (SEPs);
D O I
暂无
中图分类号
学科分类号
摘要
A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and metric-to-decahectometric wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997–2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearson’s correlation coefficients between the speeds of CMEs (sky-plane speed and corrected speed) and logarithmic peak intensity of SEP events are cc=0.62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{cc} = 0.62$\end{document} and cc=0.58\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{cc} = 0.58$\end{document}, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (−21.52ms−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-21.52~\mbox{m}\, \mbox{s}^{- 2}$\end{document}) than the non-SEP-associated CMEs (−5.63ms−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$- 5.63~\mbox{m}\, \mbox{s}^{-2}$\end{document}). The SEP-associated flares have a mean peak flux (1.85×10−4Wm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.85 \times 10^{- 4}~\mbox{W}\, \mbox{m}^{- 2}$\end{document}) three times larger than that of non-SEP-associated flares, even though the flare duration (rise time) of both sets of events is similar. The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events (1.31Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.31~R_{\mathrm{o}}$\end{document} and 3.54Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.54~R_{\mathrm{o}}$\end{document}, respectively) are lower than for non-SEP-associated events (1.61Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.61~R_{\mathrm{o}}$\end{document} and 3.91Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.91~R_{\mathrm{o}}$\end{document}, respectively). 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.
引用
收藏
相关论文
共 50 条
  • [41] Long-duration hectometric type III radio bursts and their association with solar energetic particle (SEP) events
    MacDowall, RJ
    Lara, A
    Manoharan, PK
    Nitta, NV
    Rosas, AM
    Bougeret, JL
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (12)
  • [42] Studies on metric-decimetric type II bursts in relation to soft X-ray flares
    Das, TK
    Sarkar, H
    SOLAR PHYSICS, 2002, 207 (02) : 381 - 388
  • [43] Analysis of Type II and Type III Radio Bursts Associated with SEPs from Non-Interacting/Interacting Radio-Loud CMEs
    Kalaivani, P. Pappa
    Prakash, O.
    Shanmugaraju, A.
    Feng, Li
    Lu, Lei
    Gan, Weigun
    Michalek, G.
    ASTROPHYSICS, 2021, 64 (03) : 327 - 344
  • [44] Analysis of Type II and Type III Radio Bursts Associated with SEPs from Non-Interacting/Interacting Radio-Loud CMEs
    P. Pappa Kalaivani
    O. Prakash
    A. Shanmugaraju
    Li Feng
    Lei Lu
    Weigun Gan
    G. Michalek
    Astrophysics, 2021, 64 : 327 - 344
  • [45] OCCURRENCE OF FLARES WITH TYPE-II AND TYPE-IV RADIO-BURSTS IN RELATION TO SUNSPOT GROUP TYPES
    KNOSKA, S
    KRIVSKY, L
    BULLETIN OF THE ASTRONOMICAL INSTITUTES OF CZECHOSLOVAKIA, 1984, 35 (05): : 261 - 270
  • [46] Homologous flare-CME events and their metric type II radio burst association
    Yashiro, S.
    Gopalswamy, N.
    Maekelae, P.
    Akiyama, S.
    Uddin, W.
    Srivastava, A. K.
    Joshi, N. C.
    Chandra, R.
    Manoharan, P. K.
    Mahalakshmi, K.
    Dwivedi, V. C.
    Jain, R.
    Awasthi, A. K.
    Nitta, N. V.
    Aschwanden, M. J.
    Choudhary, D. P.
    ADVANCES IN SPACE RESEARCH, 2014, 54 (09) : 1941 - 1948
  • [47] TYPE-II SOLAR RADIO-BURSTS, INTERPLANETARY SHOCKS, AND ENERGETIC PARTICLE EVENTS
    CANE, HV
    STONE, RG
    ASTROPHYSICAL JOURNAL, 1984, 282 (01): : 339 - 344
  • [48] Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. I. Reconciliation of "EIT Waves", Type II Radio Bursts, and Leading Edges of CMEs
    Grechnev, V. V.
    Uralov, A. M.
    Chertok, I. M.
    Kuzmenko, I. V.
    Afanasyev, A. N.
    Meshalkina, N. S.
    Kalashnikov, S. S.
    Kubo, Y.
    SOLAR PHYSICS, 2011, 273 (02) : 433 - 460
  • [49] THE LOCATION OF SOLAR METRIC TYPE II RADIO BURSTS WITH RESPECT TO THE ASSOCIATED CORONAL MASS EJECTIONS
    Ramesh, R.
    Lakshmi, M. Anna
    Kathiravan, C.
    Gopalswamy, N.
    Umapathy, S.
    ASTROPHYSICAL JOURNAL, 2012, 752 (02):
  • [50] Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. I. Reconciliation of “EIT Waves”, Type II Radio Bursts, and Leading Edges of CMEs
    V. V. Grechnev
    A. M. Uralov
    I. M. Chertok
    I. V. Kuzmenko
    A. N. Afanasyev
    N. S. Meshalkina
    S. S. Kalashnikov
    Y. Kubo
    Solar Physics, 2011, 273 : 433 - 460