Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

被引:0
|
作者
O. Prakash
Li Feng
G. Michalek
Weiqun Gan
Lei Lu
A. Shanmugaraju
S. Umapathy
机构
[1] Chinese Academy of Sciences,Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory
[2] Astronomical Observatory of Jagiellonian University,Department of Physics
[3] University of Chinese Academy of Sciences,School of Physics
[4] Arul Anandar College,undefined
[5] Madurai Kamaraj University,undefined
来源
关键词
Coronal mass ejections; Solar flares; Type II radio bursts; Solar energetic particle events (SEPs);
D O I
暂无
中图分类号
学科分类号
摘要
A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and metric-to-decahectometric wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997–2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearson’s correlation coefficients between the speeds of CMEs (sky-plane speed and corrected speed) and logarithmic peak intensity of SEP events are cc=0.62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{cc} = 0.62$\end{document} and cc=0.58\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{cc} = 0.58$\end{document}, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (−21.52ms−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-21.52~\mbox{m}\, \mbox{s}^{- 2}$\end{document}) than the non-SEP-associated CMEs (−5.63ms−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$- 5.63~\mbox{m}\, \mbox{s}^{-2}$\end{document}). The SEP-associated flares have a mean peak flux (1.85×10−4Wm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.85 \times 10^{- 4}~\mbox{W}\, \mbox{m}^{- 2}$\end{document}) three times larger than that of non-SEP-associated flares, even though the flare duration (rise time) of both sets of events is similar. The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events (1.31Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.31~R_{\mathrm{o}}$\end{document} and 3.54Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.54~R_{\mathrm{o}}$\end{document}, respectively) are lower than for non-SEP-associated events (1.61Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.61~R_{\mathrm{o}}$\end{document} and 3.91Ro\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.91~R_{\mathrm{o}}$\end{document}, respectively). 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.
引用
收藏
相关论文
共 50 条
  • [21] A Statistical Study on CMEs Associated with DH-Type-II Radio Bursts Based on Their Source Location (Limb and Disk Events)
    V. Vasanth
    S. Umapathy
    Solar Physics, 2013, 282 : 239 - 247
  • [22] A Statistical Study on CMEs Associated with DH-Type-II Radio Bursts Based on Their Source Location (Limb and Disk Events)
    Vasanth, V.
    Umapathy, S.
    SOLAR PHYSICS, 2013, 282 (01) : 239 - 247
  • [23] Type-II Bursts in Meter and Deca – Hectometer Wavelengths and Their Relation to Flares and CMEs: II
    O. Prakash
    S. Umapathy
    A. Shanmugaraju
    P. Pappa kalaivani
    Bojan Vršnak
    Solar Physics, 2010, 266 : 135 - 147
  • [24] Type-II Bursts in Meter and Deca - Hectometer Wavelengths and Their Relation to Flares and CMEs: II
    Prakash, O.
    Umapathy, S.
    Shanmugaraju, A.
    Kalaivani, P. Pappa
    Vrsnak, Bojan
    SOLAR PHYSICS, 2010, 266 (01) : 135 - 147
  • [25] Type II bursts in Meter and Decameter – Hectometer Wavelength Ranges and Their Relation to Flares and CMEs
    O. Prakash
    S. Umapathy
    A. Shanmugaraju
    Bojan Vršnak
    Solar Physics, 2009, 258 : 105 - 118
  • [26] Type II shocks characteristics: Comparison with associated CMEs and flares
    Pothitakis, G.
    Mitsakou, E.
    Preka-Papadema, P.
    Moussas, X.
    Caroubalos, C.
    Alissandrakis, C. E.
    Hillaris, A.
    Tsitsipis, P.
    Kontogeorgos, A.
    Bougeret, J. -L.
    Dumas, G.
    RECENT ADVANCES IN ASTRONOMY AND ASTROPHYSICS, 2006, 848 : 238 - +
  • [27] Investigation of the Geoeffectiveness of CMEs Associated with IP Type II Radio Bursts
    V. Vasanth
    Y. Chen
    X. L. Kong
    B. Wang
    Solar Physics, 2015, 290 : 1815 - 1826
  • [28] Investigation of the Geoeffectiveness of CMEs Associated with IP Type II Radio Bursts
    Vasanth, V.
    Chen, Y.
    Kong, X. L.
    Wang, B.
    SOLAR PHYSICS, 2015, 290 (06) : 1815 - 1826
  • [29] Solar type II radio bursts and IP type II events
    Cane, HV
    Erickson, WC
    ASTROPHYSICAL JOURNAL, 2005, 623 (02): : 1180 - 1194
  • [30] Characteristics of coronal mass ejection associated with DH type II radio bursts (All and Limb events)
    P. Pappa Kalaivani
    S. Umapathy
    A. Shanmugaraju
    O. Prakash
    Astrophysics and Space Science, 2010, 330 : 237 - 242