The existence of ground state solution to elliptic equation with exponential growth on complete noncompact Riemannian manifold

被引:0
|
作者
Chungen Liu
Yanjun Liu
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] Nankai University,School of Mathematical Sciences
关键词
Trudinger–Moser inequality; Riemannian manifold; Exponential growth; The ground state solution; 35J60; 35B33; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following elliptic problem: −divg(|∇gu|N−2∇gu)+V(x)|u|N−2u=f(x,u)a(x)in M,(Pa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\mathtt{div}_{g}\bigl( \vert \nabla_{g} u \vert ^{N-2}\nabla_{g} u \bigr)+V(x) \vert u \vert ^{N-2}u = \frac{f(x, u)}{a(x)}\quad \mbox{in } M, \qquad (P_{a}) $$\end{document} where (M,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(M, g)$\end{document} be a complete noncompact N-dimensional Riemannian manifold with negative curvature, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq2$\end{document}, V is a continuous function satisfying V(x)≥V0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x) \geq V_{0 }> 0$\end{document}, a is a nonnegative function and f(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x, t)$\end{document} has exponential growth with t in view of the Trudinger–Moser inequality. By proving some estimates together with the variational techniques, we get a ground state solution of (Pa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{a}$\end{document}). Moreover, we also get a nontrivial weak solution to the perturbation problem.
引用
收藏
相关论文
共 50 条
  • [21] Existence of solution for a general class of elliptic equations with exponential growth
    Anderson L. A. de Araujo
    Marcelo Montenegro
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1737 - 1748
  • [22] Existence of solution for a nonlinear equation with supercritical exponential growth
    Anderson L. A. de Araujo
    Marcelo Montenegro
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [23] Existence of solution for a nonlinear equation with supercritical exponential growth
    de Araujo, Anderson L. A.
    Montenegro, Marcelo
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [24] Existence of a ground state solution for a class of singular elliptic equation without the A-R condition
    Liu, Yanjun
    Qi, Shijie
    Zhao, Peihao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 : 233 - 245
  • [25] ON THE INJECTIVITY RADIUS GROWTH OF COMPLETE NONCOMPACT RIEMANNIAN MANIFOLDS
    Sun, Zhongyang
    Wan, Jianming
    ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 419 - 426
  • [26] Existence of a ground state solution for a nonlinear scalar field equation with critical growth
    Alves, Claudianor O.
    Souto, Marco A. S.
    Montenegro, Marcelo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) : 537 - 554
  • [27] Existence of a ground state solution for a nonlinear scalar field equation with critical growth
    Claudianor O. Alves
    Marco A. S. Souto
    Marcelo Montenegro
    Calculus of Variations and Partial Differential Equations, 2012, 43 : 537 - 554
  • [28] Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold
    Hirano, Norimichi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) : 671 - 692
  • [29] Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold
    Vil'danova, V. F.
    SBORNIK MATHEMATICS, 2020, 211 (02) : 226 - 257
  • [30] Existence of ground state solution for semilinear Δα-Laplace equation
    Chen, Jia
    Li, Lin
    Chen, Shang-Jie
    Yang, Xiao-Qiong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (11) : 1953 - 1963