On the equivalence of K-functionals and modulus of smoothness constructed by the generalized Fourier–Bessel transform

被引:0
|
作者
M. El Hamma
R. Daher
N. Djellab
Ch. Khalil
机构
[1] Université Hassan II,Laboratoire Mathématiques Fondamentales et Appliquées, Faculté des Sciences Aïn Chock
来源
Afrika Matematika | 2022年 / 33卷
关键词
Generalized Fourier–Bessel transform; Generalized translation operator; -functional; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
Using a generalized translation operator, we define generalized modulus of smoothness in the space Lα,n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {L}}_{\alpha , n}^{2}$$\end{document}. Based on the generalized Bessel operator we define Sobolev-type space and K-functionals. The main result of this paper is the proof of the equivalence theorem for a K-functional and a modulus of smoothness for the generalized Fourier–Bessel transform.
引用
收藏
相关论文
共 50 条