K-FUNCTIONALS AND MODULI OF SMOOTHNESS OF FUNCTIONS DEFINED ON COMPACT METRIC-SPACES

被引:17
|
作者
BADEA, C
机构
[1] Mathématique, Bât. 425
关键词
MODULI OF SMOOTHNESS; K-FUNCTIONAL; METRIC SPACES; QUANTITATIVE KOROVKIN THEOREMS; JACKSON-TYPE THEOREMS;
D O I
10.1016/0898-1221(95)00083-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One proves that Peetre's K-functional for the couple (C(X),Lip(X)) and the first order modulus of continuity are equivalent for every Peano continuum. Some inequalities for the first order modulus of continuity and the mixed modulus of smoothness of functions defined on some compact metric spaces are proved and some possible applications are indicated.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [1] On moduli of smoothness and K-functionals of fractional order in the Hardy spaces
    Kolomoitsev Y.S.
    [J]. Journal of Mathematical Sciences, 2012, 181 (1) : 78 - 97
  • [2] K-FUNCTIONALS AND WEIGHTED MODULI OF SMOOTHNESS
    DITZIAN, Z
    TOTIK, V
    [J]. JOURNAL OF APPROXIMATION THEORY, 1990, 63 (01) : 3 - 29
  • [3] On a Property of Moduli of Smoothness and K-Functionals
    Agratini, Octavian
    [J]. FILOMAT, 2015, 29 (07) : 1425 - 1428
  • [4] On Various Moduli of Smoothness and K-Functionals
    R. M. Trigub
    [J]. Ukrainian Mathematical Journal, 2020, 72 : 1131 - 1163
  • [5] On Various Moduli of Smoothness and K-Functionals
    Trigub, R. M.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) : 1131 - 1163
  • [6] Approximation By Bandlimited Functions, Generalized K-Functionals and Generalized Moduli of Smoothness
    S. Artamonov
    K. Runovski
    H.-J. Schmeisser
    [J]. Analysis Mathematica, 2019, 45 : 1 - 24
  • [7] Approximation By Bandlimited Functions, Generalized K-Functionals and Generalized Moduli of Smoothness
    Artamonov, S.
    Runovski, K.
    Schmeisser, H. -J.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (01) : 1 - 24
  • [8] A unified approach to inequalities for K-functionals and moduli of smoothness
    Gogatishvili, Amiran
    Opic, Bohumir
    Tikhonov, Sergey
    Trebels, Walter
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)
  • [9] Trigonometric polynomial approximation, K-functionals and generalized moduli of smoothness
    Runovski, K. V.
    [J]. SBORNIK MATHEMATICS, 2017, 208 (02) : 237 - 254
  • [10] K-functionals, moduli of smoothness and weighted best approximation on the semiaxis
    De Bonis, MC
    Mastroianni, G
    Viggiano, M
    [J]. FUNCTIONS, SERIES, OPERATORS: ALEXITS MEMORIAL CONFERENCE, 2002, : 181 - 211