Thermal Entanglement in the Quantum XXZ Model in Triangular and Bilayer Honeycomb Lattices

被引:0
|
作者
L. S. Lima
机构
[1] Federal Center for Technological Education of Minas Gerais,Department of Physics
来源
关键词
Thermal entanglement; Phase transition; Frustrated Heisenberg model;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal entanglement is studied in the frustrated two-dimensional Heisenberg model in triangular and honeycomb lattices employing linear spin waves. Our results display a strong effect of the coupling parameters of next-nearest neighbors interaction α=J′/J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =J'/J$$\end{document} on entanglement at T→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\rightarrow 0$$\end{document} , where the spin Hall conductivity is nonzero for a value of external field H. We employ linear spin waves to investigate the entanglement with T and next-nearest neighbor interaction J′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J'$$\end{document}. For the bilayer honeycomb lattice, we analyze the entanglement as a function of inter-chain coupling J⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\perp }$$\end{document}, and in this case we find that the entanglement tends to zero at T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=0$$\end{document}, where it decreases with J⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\perp }$$\end{document} for higher temperatures.
引用
收藏
页码:241 / 251
页数:10
相关论文
共 50 条
  • [41] Triangular and honeycomb lattices of cold atoms in optical cavities
    Safaei, Shabnam
    Miniatura, Christian
    Gremaud, Benoit
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [42] Quantum entanglement in fermionic lattices
    Zanardi, P
    PHYSICAL REVIEW A, 2002, 65 (04): : 5
  • [43] Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction
    Li, Da-Chuang
    Wang, Xian-Ping
    Cao, Zhuo-Liang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (32)
  • [44] Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity
    Kevrekidis, PG
    Malomed, BA
    Gaididei, YB
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 016609
  • [45] Nonequilibrium opinion dynamics on triangular, honeycomb, and Kagome lattices
    Lima, F. W. S.
    Crokidakis, N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (10):
  • [46] Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene
    Thomson, Alex
    Chatterjee, Shubhayu
    Sachdev, Subir
    Scheurer, Mathias S.
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [47] Topological entanglement entropy in the quantum dimer model on the triangular lattice
    Furukawa, Shunsuke
    Misguich, Gregoire
    PHYSICAL REVIEW B, 2007, 75 (21):
  • [48] Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice
    Owerre, S. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (38)
  • [49] FERROMAGNETISM IN THE HUBBARD-MODEL - INSTABILITY OF THE NAGAOKA STATE ON THE TRIANGULAR, HONEYCOMB AND KAGOME LATTICES
    HANISCH, T
    KLEINE, B
    RITZL, A
    MULLERHARTMANN, E
    ANNALEN DER PHYSIK, 1995, 4 (04) : 303 - 328
  • [50] Complex-temperature singularities in the d=2 Ising model: Triangular and honeycomb lattices
    Matveev, V
    Shrock, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 803 - 823