Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity

被引:68
|
作者
Kevrekidis, PG [1 ]
Malomed, BA
Gaididei, YB
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[3] NN Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 01期
关键词
D O I
10.1103/PhysRevE.66.016609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the existence and stability of localized states in the discrete nonlinear Schrodinger equation on two-dimensional nonsquare lattices. The model includes both the nearest-neighbor and long-range interactions. For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the particular type of lattice. The long-range interactions additionally destabilize the discrete soliton, or make it more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range interaction. We also explore more complicated solutions, such as twisted localized modes and solutions carrying multiple topological charge (vortices) that are specific to the triangular and honeycomb lattices. In the cases when such vortices are unstable, direct simulations demonstrate that they typically turn into zero-vorticity fundamental solitons.
引用
收藏
页码:1 / 016609
页数:10
相关论文
共 50 条
  • [1] Dark solitons in dynamical lattices with the cubic-quintic nonlinearity
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [2] Dynamics of Multipole Solitons and Vortex Solitons in PT-Symmetric Triangular Lattices with Nonlocal Nonlinearity
    Huang, Jing
    Weng, Yuanhang
    Chen, Peijun
    Wang, Hong
    APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [3] Mobility of solitons in one-dimensional lattices with the cubic-quintic nonlinearity
    Mejia-Cortes, C.
    Vicencio, Rodrigo A.
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2013, 88 (05)
  • [4] Staggered and moving localized modes in dynamical lattices with the cubic-quintic nonlinearity
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [5] BOND PERCOLATION ON HONEYCOMB AND TRIANGULAR LATTICES
    WIERMAN, JC
    ADVANCES IN APPLIED PROBABILITY, 1981, 13 (02) : 298 - 313
  • [6] Snakes in square, honeycomb and triangular lattices
    Kusdiantara, R.
    Susanto, H.
    NONLINEARITY, 2019, 32 (12) : 5170 - 5190
  • [7] Embedded solitons in dynamical lattices
    González-Pérez-Sandi, S
    Fujioka, J
    Malomed, BA
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 197 (1-2) : 86 - 100
  • [8] Solitons in optical lattices with nonlocal nonlinearity
    Ge Li-Juan
    Wang Qi
    Shen Ming
    Shi Jie-Tong
    Kong Qian
    Hou Peng
    CHINESE PHYSICS B, 2009, 18 (02) : 616 - 623
  • [9] Solitons in optical lattices with nonlocal nonlinearity
    葛丽娟
    王奇
    申明
    施解龙
    孔茜
    侯鹏
    Chinese Physics B, 2009, 18 (02) : 616 - 623
  • [10] Defect solitons in triangular optical lattices
    Zhu, Xing
    Wang, Hong
    Wu, Ting-Wan
    Zheng, Li-Xian
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (03) : 521 - 527