Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity

被引:68
|
作者
Kevrekidis, PG [1 ]
Malomed, BA
Gaididei, YB
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[3] NN Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 01期
关键词
D O I
10.1103/PhysRevE.66.016609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the existence and stability of localized states in the discrete nonlinear Schrodinger equation on two-dimensional nonsquare lattices. The model includes both the nearest-neighbor and long-range interactions. For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the particular type of lattice. The long-range interactions additionally destabilize the discrete soliton, or make it more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range interaction. We also explore more complicated solutions, such as twisted localized modes and solutions carrying multiple topological charge (vortices) that are specific to the triangular and honeycomb lattices. In the cases when such vortices are unstable, direct simulations demonstrate that they typically turn into zero-vorticity fundamental solitons.
引用
收藏
页码:1 / 016609
页数:10
相关论文
共 50 条
  • [31] Solitons in optical metamaterials with anti-cubic nonlinearity
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Zhou, Qin
    Alshomrani, Ali Saleh
    Moshokoa, Seithuti P.
    Belic, Milivoj
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05):
  • [32] Solitons in optical metamaterials with anti-cubic nonlinearity
    Anjan Biswas
    Mehmet Ekici
    Abdullah Sonmezoglu
    Qin Zhou
    Ali Saleh Alshomrani
    Seithuti P. Moshokoa
    Milivoj Belic
    The European Physical Journal Plus, 133
  • [33] Retrieval of Optical Solitons with Anti-Cubic Nonlinearity
    Ozisik, Muslum
    Secer, Aydin
    Bayram, Mustafa
    Biswas, Anjan
    Gonzalez-Gaxiola, Oswaldo
    Moraru, Luminita
    Moldovanu, Simona
    Iticescu, Catalina
    Bibicu, Dorin
    Alghamdi, Abdulah A. A.
    MATHEMATICS, 2023, 11 (05)
  • [34] Resonant optical solitons with anti-cubic nonlinearity
    Biswas, Anjan
    Jawad, Anwar Ja'afar Mohamad
    Zhou, Qin
    OPTIK, 2018, 157 : 525 - 531
  • [35] Dynamical analysis of solitons solutions of a nonlinear model with anti-cubic nonlinearity and Sardar-subequaion method
    Asjad, Muhammad Imran
    Ullah, Naeem
    Akgul, Ali
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2024, 4 (02)
  • [36] EXACT EQUILIBRIUM SHAPES OF ISING CRYSTALS ON TRIANGULAR HONEYCOMB LATTICES
    ZIA, RKP
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) : 801 - 813
  • [37] Dirac equation as a quantum walk over the honeycomb and triangular lattices
    Arrighi, Pablo
    Di Molfetta, Giuseppe
    Marquez-Martin, Ivan
    Perez, Armando
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [38] Multicritical point of Ising spin glasses on triangular and honeycomb lattices
    de Queiroz, SLA
    PHYSICAL REVIEW B, 2006, 73 (06)
  • [39] Majority-vote model on triangular, honeycomb and Kagome lattices
    Santos, J. C.
    Lima, F. W. S.
    Malarz, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (02) : 359 - 364
  • [40] Hofstadter problem on the honeycomb and triangular lattices: Bethe ansatz solution
    Kohmoto, M.
    Sedrakyan, A.
    PHYSICAL REVIEW B, 2006, 73 (23)