High-throughput discovery of novel developmental phenotypes

被引:0
|
作者
Mary E. Dickinson
Ann M. Flenniken
Xiao Ji
Lydia Teboul
Michael D. Wong
Jacqueline K. White
Terrence F. Meehan
Wolfgang J. Weninger
Henrik Westerberg
Hibret Adissu
Candice N. Baker
Lynette Bower
James M. Brown
L. Brianna Caddle
Francesco Chiani
Dave Clary
James Cleak
Mark J. Daly
James M. Denegre
Brendan Doe
Mary E. Dolan
Sarah M. Edie
Helmut Fuchs
Valerie Gailus-Durner
Antonella Galli
Alessia Gambadoro
Juan Gallegos
Shiying Guo
Neil R. Horner
Chih-Wei Hsu
Sara J. Johnson
Sowmya Kalaga
Lance C. Keith
Louise Lanoue
Thomas N. Lawson
Monkol Lek
Manuel Mark
Susan Marschall
Jeremy Mason
Melissa L. McElwee
Susan Newbigging
Lauryl M. J. Nutter
Kevin A. Peterson
Ramiro Ramirez-Solis
Douglas J. Rowland
Edward Ryder
Kaitlin E. Samocha
John R. Seavitt
Mohammed Selloum
Zsombor Szoke-Kovacs
机构
[1] Department of Molecular Physiology and Biophysics,Department of Molecular and Human Genetics
[2] The Toronto Centre for Phenogenomics,Departments of Genetics and Psychiatry
[3] Mount Sinai Hospital,undefined
[4] Genomics and Computational Biology Program,undefined
[5] Perelman School of Medicine,undefined
[6] University of Pennsylvania,undefined
[7] Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre),undefined
[8] Mouse Imaging Centre,undefined
[9] The Hospital for Sick Children,undefined
[10] The Wellcome Trust Sanger Institute,undefined
[11] European Molecular Biology Laboratory,undefined
[12] European Bioinformatics Institute,undefined
[13] Centre for Anatomy and Cell Biology,undefined
[14] Medical University of Vienna,undefined
[15] The Hospital for Sick Children,undefined
[16] The Jackson Laboratory,undefined
[17] Mouse Biology Program,undefined
[18] University of California,undefined
[19] Monterotondo Mouse Clinic,undefined
[20] Italian National Research Council (CNR),undefined
[21] Institute of Cell Biology and Neurobiology,undefined
[22] Analytic and Translational Genetics Unit,undefined
[23] Massachusetts General Hospital,undefined
[24] Program in Medical and Population Genetics,undefined
[25] Broad Institute MIT and Harvard,undefined
[26] Helmholtz Zentrum München,undefined
[27] German Research Center for Environmental Health,undefined
[28] Institute of Experimental Genetics and German Mouse Clinic,undefined
[29] Baylor College of Medicine,undefined
[30] SKL of Pharmaceutical Biotechnology and Model Animal Research Center,undefined
[31] Collaborative Innovation Center for Genetics and Development,undefined
[32] Nanjing Biomedical Research Institute,undefined
[33] Nanjing University,undefined
[34] Infrastructure Nationale PHENOMIN,undefined
[35] Institut Clinique de la Souris (ICS),undefined
[36] et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS,undefined
[37] INSERM,undefined
[38] University of Strasbourg,undefined
[39] RIKEN BioResource Center,undefined
[40] Children’s Hospital Oakland Research Institute,undefined
[41] IMPC,undefined
[42] Chair of Experimental Genetics,undefined
[43] School of Life Science Weihenstephan,undefined
[44] Technische Universität München,undefined
[45] German Center for Diabetes Research (DZD),undefined
[46] The Francis Crick Institute Mill Hill Laboratory,undefined
[47] The Ridgeway,undefined
[48] Perlman School of Medicine,undefined
[49] University of Pennsylvania,undefined
[50] Charles River Laboratories,undefined
来源
Nature | 2016年 / 537卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
引用
收藏
页码:508 / 514
页数:6
相关论文
共 50 条
  • [41] Discovery of novel Leishmania major trypanothione synthetase inhibitors by high-throughput screening
    Phan, Trong-Nhat
    Park, Kyuho Paul
    Benitez, Diego
    Comini, Marcelo A.
    Shum, David
    No, Joo Hwan
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 637 : 308 - 313
  • [42] Novel colloidal materials for high-throughput screening applications in drug discovery and genomics
    Trau, M
    Battersby, BJ
    ADVANCED MATERIALS, 2001, 13 (12-13) : 975 - +
  • [43] Development of a novel high-throughput screening assay for rapid discovery of lipoxygenase inhibitors
    Deschamps, JD
    Shah, RR
    Holman, TR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U149 - U150
  • [44] Spectral imaging for the discovery of novel catalytic materials using high-throughput screening
    Hattrick-Simpers, Jason
    Bedenbaugh, John
    Kim, Sungtak
    Salim, Shahriar
    Ashok, Jangam
    Lauterbach, Jochen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [45] Discovery of novel NLRP3 inhibitors enabled by a high-throughput screen
    Dorich, Stephane
    Auger, Anick
    Wang, Li
    Burch, Jason
    Pellerin, Charles
    Chan, Silas
    Raymond, Marianne
    Zhang, Lingling
    Chefson, Amandine
    Germain, Marie-Anne
    Jananji, Silvana
    Dumais, Valerie
    Gaudreault, Samuel
    Caron, Alexandre
    Dumas-Berube, Emilie
    Crackower, Michael. A.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2025, 122
  • [46] Dielectrophoresis for drug discovery and cell analysis: novel electrodes for high-throughput screening
    Hughes, MP
    Hoettges, KF
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 172A - 172A
  • [47] High-throughput synthesis and direct screening for the discovery of novel hydrolytic metal complexes
    Berg, T
    Vandersteen, AM
    Janda, KD
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1998, 8 (10) : 1221 - 1224
  • [48] High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes
    Robert Brommage
    Jeff Liu
    Gwenn M Hansen
    Laura L Kirkpatrick
    David G Potter
    Arthur T Ss
    Brian Zambrowicz
    David R Powell
    Peter Vogel
    Bone Research, 2014, (03) : 152 - 181
  • [49] High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials
    Petousis, Ioannis
    Mrdjenovich, David
    Ballouz, Eric
    Liu, Miao
    Winston, Donald
    Chen, Wei
    Graf, Tanja
    Schladt, Thomas D.
    Persson, Kristin A.
    Prinz, Fritz B.
    SCIENTIFIC DATA, 2017, 4
  • [50] Discovery of Novel Candidate Oncogenes in Pancreatic Carcinoma using High-Throughput Microarrays
    Jiang, Yajian
    Liu, Mingdong
    Li, Zhaoshen
    Jiang, Yegui
    HEPATO-GASTROENTEROLOGY, 2013, 60 (128) : 1825 - 1832