High-throughput discovery of novel developmental phenotypes

被引:0
|
作者
Mary E. Dickinson
Ann M. Flenniken
Xiao Ji
Lydia Teboul
Michael D. Wong
Jacqueline K. White
Terrence F. Meehan
Wolfgang J. Weninger
Henrik Westerberg
Hibret Adissu
Candice N. Baker
Lynette Bower
James M. Brown
L. Brianna Caddle
Francesco Chiani
Dave Clary
James Cleak
Mark J. Daly
James M. Denegre
Brendan Doe
Mary E. Dolan
Sarah M. Edie
Helmut Fuchs
Valerie Gailus-Durner
Antonella Galli
Alessia Gambadoro
Juan Gallegos
Shiying Guo
Neil R. Horner
Chih-Wei Hsu
Sara J. Johnson
Sowmya Kalaga
Lance C. Keith
Louise Lanoue
Thomas N. Lawson
Monkol Lek
Manuel Mark
Susan Marschall
Jeremy Mason
Melissa L. McElwee
Susan Newbigging
Lauryl M. J. Nutter
Kevin A. Peterson
Ramiro Ramirez-Solis
Douglas J. Rowland
Edward Ryder
Kaitlin E. Samocha
John R. Seavitt
Mohammed Selloum
Zsombor Szoke-Kovacs
机构
[1] Department of Molecular Physiology and Biophysics,Department of Molecular and Human Genetics
[2] The Toronto Centre for Phenogenomics,Departments of Genetics and Psychiatry
[3] Mount Sinai Hospital,undefined
[4] Genomics and Computational Biology Program,undefined
[5] Perelman School of Medicine,undefined
[6] University of Pennsylvania,undefined
[7] Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre),undefined
[8] Mouse Imaging Centre,undefined
[9] The Hospital for Sick Children,undefined
[10] The Wellcome Trust Sanger Institute,undefined
[11] European Molecular Biology Laboratory,undefined
[12] European Bioinformatics Institute,undefined
[13] Centre for Anatomy and Cell Biology,undefined
[14] Medical University of Vienna,undefined
[15] The Hospital for Sick Children,undefined
[16] The Jackson Laboratory,undefined
[17] Mouse Biology Program,undefined
[18] University of California,undefined
[19] Monterotondo Mouse Clinic,undefined
[20] Italian National Research Council (CNR),undefined
[21] Institute of Cell Biology and Neurobiology,undefined
[22] Analytic and Translational Genetics Unit,undefined
[23] Massachusetts General Hospital,undefined
[24] Program in Medical and Population Genetics,undefined
[25] Broad Institute MIT and Harvard,undefined
[26] Helmholtz Zentrum München,undefined
[27] German Research Center for Environmental Health,undefined
[28] Institute of Experimental Genetics and German Mouse Clinic,undefined
[29] Baylor College of Medicine,undefined
[30] SKL of Pharmaceutical Biotechnology and Model Animal Research Center,undefined
[31] Collaborative Innovation Center for Genetics and Development,undefined
[32] Nanjing Biomedical Research Institute,undefined
[33] Nanjing University,undefined
[34] Infrastructure Nationale PHENOMIN,undefined
[35] Institut Clinique de la Souris (ICS),undefined
[36] et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS,undefined
[37] INSERM,undefined
[38] University of Strasbourg,undefined
[39] RIKEN BioResource Center,undefined
[40] Children’s Hospital Oakland Research Institute,undefined
[41] IMPC,undefined
[42] Chair of Experimental Genetics,undefined
[43] School of Life Science Weihenstephan,undefined
[44] Technische Universität München,undefined
[45] German Center for Diabetes Research (DZD),undefined
[46] The Francis Crick Institute Mill Hill Laboratory,undefined
[47] The Ridgeway,undefined
[48] Perlman School of Medicine,undefined
[49] University of Pennsylvania,undefined
[50] Charles River Laboratories,undefined
来源
Nature | 2016年 / 537卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
引用
收藏
页码:508 / 514
页数:6
相关论文
共 50 条
  • [21] High-Throughput Routes to Biomaterials Discovery
    Soheilmoghaddam, Farhad
    Rumble, Madeleine
    Cooper-White, Justin
    CHEMICAL REVIEWS, 2021, 121 (18) : 10792 - 10864
  • [22] High-throughput gene discovery in the rat
    Scheetz, TE
    Laffin, JJ
    Berger, B
    Holte, S
    Baumes, SA
    Brown, R
    Chang, S
    Coco, J
    Conklin, J
    Crouch, K
    Donohue, M
    Doonan, G
    Estes, C
    Eyestone, M
    Fishler, K
    Gardiner, J
    Guo, L
    Johnson, B
    Keppel, C
    Kreger, R
    Lebeck, M
    Marcelino, R
    Miljkovich, M
    Perdue, M
    Qui, L
    Rehmann, J
    Reiter, RS
    Rhoads, B
    Schaefer, K
    Smith, C
    Sunjevaric, I
    Trout, K
    Wu, N
    Birkett, CL
    Bischof, J
    Gackle, B
    Gavin, A
    Grundstad, AJ
    Mokrzycki, B
    Moressi, C
    Oleary, B
    Pedretti, K
    Roberts, C
    Robinson, NL
    Smith, M
    Tack, D
    Trivedi, N
    Kucaba, T
    Freeman, T
    Lin, JJC
    GENOME RESEARCH, 2004, 14 (04) : 733 - 741
  • [23] High-throughput strategies for the discovery of catalysts
    Shimizu, KD
    Snapper, ML
    Hoveyda, AH
    CHEMISTRY-A EUROPEAN JOURNAL, 1998, 4 (10) : 1885 - 1889
  • [24] High-throughput kinetics in drug discovery
    Pinto, Maria Filipa
    Sirina, Julija
    Holliday, Nicholas D.
    Mcwhirter, Claire L.
    SLAS DISCOVERY, 2024, 29 (05)
  • [25] High-Throughput Screening for Biomarker Discovery
    Janvilisri, Tavan
    Suzuki, Haruo
    Scaria, Joy
    Chen, Jenn-Wei
    Charoensawan, Varodom
    DISEASE MARKERS, 2015, 2015
  • [27] High-throughput screening for drug discovery
    Broach, JR
    Thorner, J
    NATURE, 1996, 384 (6604) : 14 - 16
  • [28] High-throughput approaches to catalyst discovery
    Murphy, V
    Volpe, AF
    Weinberg, WH
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (03) : 427 - 433
  • [29] Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening
    Ostrov, David A.
    Prada, Jose A. Hernandez
    Corsino, Patrick E.
    Finton, Kathryn A.
    Le, Nhan
    Rowe, Thomas C.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (10) : 3688 - 3698
  • [30] Acceleration of high-throughput molecular docking for novel drug discovery on supercomputers
    Ellingson, Sally R.
    Smith, Jeremy C.
    Baudry, Jerome
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245