High-throughput discovery of novel developmental phenotypes

被引:0
|
作者
Mary E. Dickinson
Ann M. Flenniken
Xiao Ji
Lydia Teboul
Michael D. Wong
Jacqueline K. White
Terrence F. Meehan
Wolfgang J. Weninger
Henrik Westerberg
Hibret Adissu
Candice N. Baker
Lynette Bower
James M. Brown
L. Brianna Caddle
Francesco Chiani
Dave Clary
James Cleak
Mark J. Daly
James M. Denegre
Brendan Doe
Mary E. Dolan
Sarah M. Edie
Helmut Fuchs
Valerie Gailus-Durner
Antonella Galli
Alessia Gambadoro
Juan Gallegos
Shiying Guo
Neil R. Horner
Chih-Wei Hsu
Sara J. Johnson
Sowmya Kalaga
Lance C. Keith
Louise Lanoue
Thomas N. Lawson
Monkol Lek
Manuel Mark
Susan Marschall
Jeremy Mason
Melissa L. McElwee
Susan Newbigging
Lauryl M. J. Nutter
Kevin A. Peterson
Ramiro Ramirez-Solis
Douglas J. Rowland
Edward Ryder
Kaitlin E. Samocha
John R. Seavitt
Mohammed Selloum
Zsombor Szoke-Kovacs
机构
[1] Department of Molecular Physiology and Biophysics,Department of Molecular and Human Genetics
[2] The Toronto Centre for Phenogenomics,Departments of Genetics and Psychiatry
[3] Mount Sinai Hospital,undefined
[4] Genomics and Computational Biology Program,undefined
[5] Perelman School of Medicine,undefined
[6] University of Pennsylvania,undefined
[7] Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre),undefined
[8] Mouse Imaging Centre,undefined
[9] The Hospital for Sick Children,undefined
[10] The Wellcome Trust Sanger Institute,undefined
[11] European Molecular Biology Laboratory,undefined
[12] European Bioinformatics Institute,undefined
[13] Centre for Anatomy and Cell Biology,undefined
[14] Medical University of Vienna,undefined
[15] The Hospital for Sick Children,undefined
[16] The Jackson Laboratory,undefined
[17] Mouse Biology Program,undefined
[18] University of California,undefined
[19] Monterotondo Mouse Clinic,undefined
[20] Italian National Research Council (CNR),undefined
[21] Institute of Cell Biology and Neurobiology,undefined
[22] Analytic and Translational Genetics Unit,undefined
[23] Massachusetts General Hospital,undefined
[24] Program in Medical and Population Genetics,undefined
[25] Broad Institute MIT and Harvard,undefined
[26] Helmholtz Zentrum München,undefined
[27] German Research Center for Environmental Health,undefined
[28] Institute of Experimental Genetics and German Mouse Clinic,undefined
[29] Baylor College of Medicine,undefined
[30] SKL of Pharmaceutical Biotechnology and Model Animal Research Center,undefined
[31] Collaborative Innovation Center for Genetics and Development,undefined
[32] Nanjing Biomedical Research Institute,undefined
[33] Nanjing University,undefined
[34] Infrastructure Nationale PHENOMIN,undefined
[35] Institut Clinique de la Souris (ICS),undefined
[36] et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS,undefined
[37] INSERM,undefined
[38] University of Strasbourg,undefined
[39] RIKEN BioResource Center,undefined
[40] Children’s Hospital Oakland Research Institute,undefined
[41] IMPC,undefined
[42] Chair of Experimental Genetics,undefined
[43] School of Life Science Weihenstephan,undefined
[44] Technische Universität München,undefined
[45] German Center for Diabetes Research (DZD),undefined
[46] The Francis Crick Institute Mill Hill Laboratory,undefined
[47] The Ridgeway,undefined
[48] Perlman School of Medicine,undefined
[49] University of Pennsylvania,undefined
[50] Charles River Laboratories,undefined
来源
Nature | 2016年 / 537卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
引用
收藏
页码:508 / 514
页数:6
相关论文
共 50 条
  • [1] High-throughput discovery of novel developmental phenotypes
    Dickinson, Mary E.
    Flenniken, Ann M.
    Ji, Xiao
    Teboul, Lydia
    Wong, Michael D.
    White, Jacqueline K.
    Meehan, Terrence F.
    Weninger, Wolfgang J.
    Westerberg, Henrik
    Adissu, Hibret
    Baker, Candice N.
    Bower, Lynette
    Brown, James M.
    Caddle, L. Brianna
    Chiani, Francesco
    Clary, Dave
    Cleak, James
    Daly, Mark J.
    Denegre, James M.
    Doe, Brendan
    Dolan, Mary E.
    Edie, Sarah M.
    Fuchs, Helmut
    Gailus-Durner, Valerie
    Galli, Antonella
    Gambadoro, Alessia
    Gallegos, Juan
    Guo, Shiying
    Horner, Neil R.
    Hsu, Chih-Wei
    Johnson, Sara J.
    Kalaga, Sowmya
    Keith, Lance C.
    Lanoue, Louise
    Lawson, Thomas N.
    Lek, Monkol
    Mark, Manuel
    Arschall, Susan M.
    Mason, Jeremy
    McElwee, Melissa L.
    Newbigging, Susan
    Nutter, Lauryl M. J.
    Peterson, Kevin A.
    Ramirez-Solis, Ramiro
    Rowland, Douglas J.
    Ryder, Edward
    Samocha, Kaitlin E.
    Seavitt, John R.
    Selloum, Mohammed
    Szoke-Kovacs, Zsombor
    NATURE, 2016, 537 (7621) : 508 - +
  • [2] Correction: Corrigendum: High-throughput discovery of novel developmental phenotypes
    Mary E. Dickinson
    Ann M. Flenniken
    Xiao Ji
    Lydia Teboul
    Michael D. Wong
    Jacqueline K. White
    Terrence F. Meehan
    Wolfgang J. Weninger
    Henrik Westerberg
    Hibret Adissu
    Candice N. Baker
    Lynette Bower
    James M. Brown
    L. Brianna Caddle
    Francesco Chiani
    Dave Clary
    James Cleak
    Mark J. Daly
    James M. Denegre
    Brendan Doe
    Mary E. Dolan
    Sarah M. Edie Helmut Fuchs
    Valerie Gailus-Durner
    Antonella Galli
    Alessia Gambadoro
    Juan Gallegos
    Shiying Guo
    Neil R. Horner
    Chih-Wei Hsu
    Sara J. Johnson
    Sowmya Kalaga
    Lance C. Keith
    Louise Lanoue
    Thomas N. Lawson
    Monkol Lek
    Manuel Mark
    Susan Marschall
    Jeremy Mason
    Melissa L. McElwee
    Susan Newbigging Lauryl M. J. Nutter
    Kevin A. Peterson
    Ramiro Ramirez-Solis
    Douglas J. Rowland
    Edward Ryder
    Kaitlin E. Samocha
    John R. Seavitt
    Mohammed Selloum
    Zsombor Szoke-Kovacs
    Masaru Tamura
    Amanda G. Trainor
    Nature, 2017, 551 : 398 - 398
  • [3] High-throughput discovery of novel developmental phenotypes (vol 537, pg 508, 2016)
    Dickinson, Mary E.
    Flenniken, Ann M.
    Ji, Xiao
    Teboul, Lydia
    Wong, Michael D.
    White, Jacqueline K.
    Meehan, Terrence F.
    Weninger, Wolfgang J.
    Westerberg, Henrik
    Adissu, Hibret
    Baker, Candice N.
    Bower, Lynette
    Brown, James M.
    Caddle, L. Brianna
    Chiani, Francesco
    Clary, Dave
    Cleak, James
    Daly, Mark J.
    Denegre, James M.
    Doe, Brendan
    Dolan, Mary E.
    Fuchs, Sarah M. Edie Helmut
    Gailus-Durner, Valerie
    Galli, Antonella
    Gambadoro, Alessia
    Gallegos, Juan
    Guo, Shiying
    Horner, Neil R.
    Hsu, Chih-Wei
    Johnson, Sara J.
    Kalaga, Sowmya
    Keith, Lance C.
    Lanoue, Louise
    Lawson, Thomas N.
    Lek, Monkol
    Mark, Manuel
    Marschall, Susan
    Mason, Jeremy
    McElwee, Melissa L.
    Nutter, Susan Newbigging Lauryl M. J.
    Peterson, Kevin A.
    Ramirez-Solis, Ramiro
    Rowland, Douglas J.
    Ryder, Edward
    Samocha, Kaitlin E.
    Seavitt, John R.
    Selloum, Mohammed
    Szoke-Kovacs, Zsombor
    Tamura, Masaru
    Trainor, Amanda G.
    NATURE, 2017, 551 (7680) : 398 - 398
  • [4] High-Throughput Platform for Novel Reaction Discovery
    Lu, Xiao
    Luo, Zhiji
    Huang, Ruili
    Lo, Donald C.
    Huang, Wenwei
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (50)
  • [5] A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans
    Olmedo, Maria
    Geibel, Mirjam
    Artal-Sanz, Marta
    Merrow, Martha
    GENETICS, 2015, 201 (02) : 443 - +
  • [6] High-Throughput Chemical Screening for Antivirulence Developmental Phenotypes in Trypanosoma brucei
    MacGregor, Paula
    Ivens, Alasdair
    Shave, Steven
    Collie, Iain
    Gray, David
    Auer, Manfred
    Matthews, Keith R.
    EUKARYOTIC CELL, 2014, 13 (03) : 412 - 426
  • [7] Microfluidic High-Throughput Platforms for Discovery of Novel Materials
    Zhou, Peipei
    He, Jinxu
    Huang, Lu
    Yu, Ziming
    Su, Zhenning
    Shi, Xuetao
    Zhou, Jianhua
    NANOMATERIALS, 2020, 10 (12) : 1 - 17
  • [8] High-throughput discovery metabolomics
    Fuhrer, Tobias
    Zamboni, Nicola
    Current Opinion in Biotechnology, 2015, 31 : 73 - 78
  • [9] High-throughput discovery metabolomics
    Fuhrer, Tobias
    Zamboni, Nicola
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 31 : 73 - 78
  • [10] High-throughput discovery metabolomics
    Fuhrer, Tobias
    Zamboni, Nicola
    Current Opinion in Biotechnology, 2015, 31 : 73 - 78