A Product Formula Related to Quantum Zeno Dynamics

被引:0
|
作者
Pavel Exner
Takashi Ichinose
机构
[1] Academy of Sciences,Department of Theoretical Physics, Nuclear Physics Institute
[2] Czech Technical University,Doppler Institute
[3] Kanazawa University,Department of Mathematics, Faculty of Science
来源
Annales Henri Poincaré | 2005年 / 6卷
关键词
Hilbert Space; Mathematical Method; Orthogonal Projection; Unitary Group; Separable Hilbert Space;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a product formula which involves the unitary group generated by a semibounded self-adjoint operator and an orthogonal projection P on a separable Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H},$ \end{document} with the convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{{\text{loc}}}^2 (\mathbb{R};\mathcal{H}).$ \end{document} It gives a partial answer to the question about existence of the limit which describes quantum Zeno dynamics in the subspace Ran P. The convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$ \end{document} is demonstrated in the case of a finite-dimensional P. The main result is illustrated in the example where the projection corresponds to a domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^d $ \end{document} and the unitary group is the free Schrödinger evolution.
引用
收藏
页码:195 / 215
页数:20
相关论文
共 50 条
  • [41] Teleportation of a quantum particle in a potential via quantum Zeno dynamics
    Porras, Miguel A.
    Casado-alvaro, Miguel
    Gonzalo, Isabel
    [J]. PHYSICAL REVIEW A, 2024, 109 (03)
  • [42] Observed quantum dynamics: classical dynamics and lack of Zeno effect
    Lopez, Julian
    Ares, Laura
    Luis, Alfredo
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)
  • [43] Quantum Zeno and inverse quantum Zeno effects
    Facchi, Paolo
    Pascazio, Saverio
    [J]. PROGRESS IN OPTICS, VOL 42, 2001, 42 : 147 - 217
  • [44] Superactivating Bound Entanglement in Quantum Networks via Quantum Zeno Dynamics and a Novel Algorithm for Optimized Zeno Evolution
    Ozaydin, Fatih
    Bayrakci, Veysel
    Altintas, Azmi Ali
    Bayindir, Cihan
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [45] Steering distillation processes through quantum Zeno dynamics
    Militello, B
    Nakazato, H
    Messina, A
    [J]. PHYSICAL REVIEW A, 2005, 71 (03):
  • [46] Quantum information processing with quantum zeno many-body dynamics
    Monras, Alex
    Romero-Isart, Oriol
    [J]. Quantum Information and Computation, 2010, 10 (3-4): : 0201 - 0222
  • [47] Quantum entanglement via two-qubit quantum Zeno dynamics
    Wang, Xiang-Bin
    You, J. Q.
    Nori, Franco
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [48] Confined quantum Zeno dynamics of a watched atomic arrow
    Adrien Signoles
    Adrien Facon
    Dorian Grosso
    Igor Dotsenko
    Serge Haroche
    Jean-Michel Raimond
    Michel Brune
    Sébastien Gleyzes
    [J]. Nature Physics, 2014, 10 : 715 - 719
  • [49] Atomic quantum state transferring and swapping via quantum Zeno dynamics
    Shi, Zhi-Cheng
    Xia, Yan
    Song, Jie
    Song, He-Shan
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (12) : 2909 - 2914
  • [50] Distributed CNOT gate via quantum Zeno dynamics
    Shao, Xiao-Qiang
    Wang, Hong-Fu
    Chen, Li
    Zhang, Shou
    Zhao, Yong-Fang
    Yeon, Kyu-Hwang
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (12) : 2440 - 2444