A Product Formula Related to Quantum Zeno Dynamics

被引:0
|
作者
Pavel Exner
Takashi Ichinose
机构
[1] Academy of Sciences,Department of Theoretical Physics, Nuclear Physics Institute
[2] Czech Technical University,Doppler Institute
[3] Kanazawa University,Department of Mathematics, Faculty of Science
来源
Annales Henri Poincaré | 2005年 / 6卷
关键词
Hilbert Space; Mathematical Method; Orthogonal Projection; Unitary Group; Separable Hilbert Space;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a product formula which involves the unitary group generated by a semibounded self-adjoint operator and an orthogonal projection P on a separable Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H},$ \end{document} with the convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{{\text{loc}}}^2 (\mathbb{R};\mathcal{H}).$ \end{document} It gives a partial answer to the question about existence of the limit which describes quantum Zeno dynamics in the subspace Ran P. The convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$ \end{document} is demonstrated in the case of a finite-dimensional P. The main result is illustrated in the example where the projection corresponds to a domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^d $ \end{document} and the unitary group is the free Schrödinger evolution.
引用
收藏
页码:195 / 215
页数:20
相关论文
共 50 条
  • [31] Dynamics of quantum zeno and anti-zeno effects in an open system
    Zhang Peng
    Ai Qing
    Li Yong
    Xu DaZhi
    Sun ChangPu
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (02) : 194 - 207
  • [32] Quantum Zeno Dynamics Through Stochastic Protocols
    Mueller, Matthias M.
    Gherardini, Stefano
    Caruso, Filippo
    [J]. ANNALEN DER PHYSIK, 2017, 529 (09)
  • [33] Influence of statistics on decoherence and quantum Zeno dynamics
    Herzog, U
    [J]. OPTICS COMMUNICATIONS, 2000, 179 (1-6) : 381 - 394
  • [34] Zeno subspace in quantum-walk dynamics
    Chandrashekar, C.M.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2010, 82 (05):
  • [35] Perturbative approach for the dynamics of the quantum Zeno subspaces
    Chen, YX
    Fang, ZW
    [J]. PHYSICAL REVIEW A, 2004, 70 (06): : 062102 - 1
  • [36] Zeno subspace in quantum-walk dynamics
    Chandrashekar, C. M.
    [J]. PHYSICAL REVIEW A, 2010, 82 (05):
  • [37] Constrained optimization via quantum Zeno dynamics
    Dylan Herman
    Ruslan Shaydulin
    Yue Sun
    Shouvanik Chakrabarti
    Shaohan Hu
    Pierre Minssen
    Arthur Rattew
    Romina Yalovetzky
    Marco Pistoia
    [J]. Communications Physics, 6
  • [38] Quantum Zeno dynamics: mathematical and physical aspects
    Facchi, P.
    Pascazio, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (49)
  • [39] Constrained optimization via quantum Zeno dynamics
    Herman, Dylan
    Shaydulin, Ruslan
    Sun, Yue
    Chakrabarti, Shouvanik
    Hu, Shaohan
    Minssen, Pierre
    Rattew, Arthur
    Yalovetzky, Romina
    Pistoia, Marco
    [J]. COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [40] A distributed quantum phase gate via quantum Zeno dynamics
    Shen, Li-Tuo
    Chen, Rong-Xin
    Chen, Xin-Yu
    Pan, Wan-Yi
    [J]. PHYSICA SCRIPTA, 2012, 85 (01)