A Product Formula Related to Quantum Zeno Dynamics

被引:0
|
作者
Pavel Exner
Takashi Ichinose
机构
[1] Academy of Sciences,Department of Theoretical Physics, Nuclear Physics Institute
[2] Czech Technical University,Doppler Institute
[3] Kanazawa University,Department of Mathematics, Faculty of Science
来源
Annales Henri Poincaré | 2005年 / 6卷
关键词
Hilbert Space; Mathematical Method; Orthogonal Projection; Unitary Group; Separable Hilbert Space;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a product formula which involves the unitary group generated by a semibounded self-adjoint operator and an orthogonal projection P on a separable Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H},$ \end{document} with the convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{{\text{loc}}}^2 (\mathbb{R};\mathcal{H}).$ \end{document} It gives a partial answer to the question about existence of the limit which describes quantum Zeno dynamics in the subspace Ran P. The convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$ \end{document} is demonstrated in the case of a finite-dimensional P. The main result is illustrated in the example where the projection corresponds to a domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^d $ \end{document} and the unitary group is the free Schrödinger evolution.
引用
收藏
页码:195 / 215
页数:20
相关论文
共 50 条
  • [1] A product formula related to quantum zeno dynamics
    Exner, P
    Ichinose, T
    [J]. ANNALES HENRI POINCARE, 2005, 6 (02): : 195 - 215
  • [2] Note on a Product Formula Related to Quantum Zeno Dynamics
    Pavel Exner
    Takashi Ichinose
    [J]. Annales Henri Poincaré, 2021, 22 : 1669 - 1697
  • [3] Correction to: Note on a Product Formula Related to Quantum Zeno Dynamics
    Pavel Exner
    Takashi Ichinose
    [J]. Annales Henri Poincaré, 2021, 22 (5) : 1699 - 1700
  • [4] Note on a Product Formula Related to Quantum Zeno Dynamics (Jan, 10.1007/s00023-020-01014-z, 2021)
    Exner, Pavel
    Ichinose, Takashi
    [J]. ANNALES HENRI POINCARE, 2021, 22 (05): : 1699 - 1700
  • [5] Zeno Product Formula Revisited
    Pavel Exner
    Takashi Ichinose
    Hagen Neidhardt
    Valentin A. Zagrebnov
    [J]. Integral Equations and Operator Theory, 2007, 57 : 67 - 81
  • [6] Zeno product formula revisited
    Exner, Pavel
    Ichinose, Takashi
    Neidhardt, Hagen
    Zagrebnov, Valentin A.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 57 (01) : 67 - 81
  • [7] Quantum Zeno dynamics and quantum Zeno subspaces
    Facchi, Paolo
    Marmo, Giuseppe
    Pascazio, Saverio
    [J]. SUDARSHAN: SEVEN SCIENCE QUESTS, 2009, 196
  • [8] Quantum Zeno dynamics
    Facchi, P
    Gorini, V
    Marmo, G
    Pascazio, S
    Sudarshan, ECG
    [J]. PHYSICS LETTERS A, 2000, 275 (1-2) : 12 - 19
  • [9] Quantum Zeno Effect and Quantum Zeno Dynamics in Cavity Quantum Electrodynamics
    Raimond, J. M.
    Sayrin, C.
    Gleyzes, S.
    Dotsenko, I.
    Brune, M.
    Haroche, S.
    Facchi, P.
    Pascazio, S.
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [10] Quantum Zeno effect and dynamics
    Facchi, Paolo
    Ligabo, Marilena
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)